Understanding the implication of what “well-defined” means for the operation in quotient group












2












$begingroup$


I want to get an intuitive idea of the operation being "well-defined" for quotient groups. So, let's say I have a group $G$, with subgroup $H$, and let's say my set of left cosets is $G/K$. My lecture note says this: If $H$ is normal, then $G/H$ is a group under binary operation $aH circ bH = (ab)H$. So let's say I am asked whether $G/H$ forms a group where $H$ is not normal, and I have already determined that. My professor referred to the following which I am not sure if I totally understand:



Show that there are $a, b, a', b' in G$ such that $ aH = a'H$ and $bH = b'H$ but $aH circ bH = (ab)H neq a'H circ b'H = (a'b')H$, and you are done, and I did what she suggested, but I am not sure what is going on. So,



$1.$ What did I exactly show by proving what my professor suggested?



$2.$ In general, is it a strategy that every time you have to prove $G/H$ does not form a group for a non-normal $H$, you show that the operation is not well-defined?



Also, a quick google search also showed me that the theorem that talks about $G/K$ forming a group is an "if and only if" statement and not difficult to prove as well. Still, any help on my questions above would be great.










share|cite|improve this question









$endgroup$








  • 5




    $begingroup$
    For multiplication of cosets to be well-defined you have to get the same answer no matter which representative of the cosets you choose
    $endgroup$
    – J. W. Tanner
    4 hours ago








  • 1




    $begingroup$
    If $C,D$ are cosets of $H$, we'd like to define $C*D$ by taking a random element of $a in C$ and a random element of $b in D$ and define $C*D = E$ where $E$ is the coset containing $ab$. But we've made a random choice here, so we would expect $E$ to also be "random". But as it turns out, we get the same result $E$ no matter what $a, b$ we pick. That's what we mean when we say the operation is well-defined. In general, to prove something is well-defined means to prove that the "random" choices we made during the construction don't change the result.
    $endgroup$
    – Jair Taylor
    4 hours ago
















2












$begingroup$


I want to get an intuitive idea of the operation being "well-defined" for quotient groups. So, let's say I have a group $G$, with subgroup $H$, and let's say my set of left cosets is $G/K$. My lecture note says this: If $H$ is normal, then $G/H$ is a group under binary operation $aH circ bH = (ab)H$. So let's say I am asked whether $G/H$ forms a group where $H$ is not normal, and I have already determined that. My professor referred to the following which I am not sure if I totally understand:



Show that there are $a, b, a', b' in G$ such that $ aH = a'H$ and $bH = b'H$ but $aH circ bH = (ab)H neq a'H circ b'H = (a'b')H$, and you are done, and I did what she suggested, but I am not sure what is going on. So,



$1.$ What did I exactly show by proving what my professor suggested?



$2.$ In general, is it a strategy that every time you have to prove $G/H$ does not form a group for a non-normal $H$, you show that the operation is not well-defined?



Also, a quick google search also showed me that the theorem that talks about $G/K$ forming a group is an "if and only if" statement and not difficult to prove as well. Still, any help on my questions above would be great.










share|cite|improve this question









$endgroup$








  • 5




    $begingroup$
    For multiplication of cosets to be well-defined you have to get the same answer no matter which representative of the cosets you choose
    $endgroup$
    – J. W. Tanner
    4 hours ago








  • 1




    $begingroup$
    If $C,D$ are cosets of $H$, we'd like to define $C*D$ by taking a random element of $a in C$ and a random element of $b in D$ and define $C*D = E$ where $E$ is the coset containing $ab$. But we've made a random choice here, so we would expect $E$ to also be "random". But as it turns out, we get the same result $E$ no matter what $a, b$ we pick. That's what we mean when we say the operation is well-defined. In general, to prove something is well-defined means to prove that the "random" choices we made during the construction don't change the result.
    $endgroup$
    – Jair Taylor
    4 hours ago














2












2








2





$begingroup$


I want to get an intuitive idea of the operation being "well-defined" for quotient groups. So, let's say I have a group $G$, with subgroup $H$, and let's say my set of left cosets is $G/K$. My lecture note says this: If $H$ is normal, then $G/H$ is a group under binary operation $aH circ bH = (ab)H$. So let's say I am asked whether $G/H$ forms a group where $H$ is not normal, and I have already determined that. My professor referred to the following which I am not sure if I totally understand:



Show that there are $a, b, a', b' in G$ such that $ aH = a'H$ and $bH = b'H$ but $aH circ bH = (ab)H neq a'H circ b'H = (a'b')H$, and you are done, and I did what she suggested, but I am not sure what is going on. So,



$1.$ What did I exactly show by proving what my professor suggested?



$2.$ In general, is it a strategy that every time you have to prove $G/H$ does not form a group for a non-normal $H$, you show that the operation is not well-defined?



Also, a quick google search also showed me that the theorem that talks about $G/K$ forming a group is an "if and only if" statement and not difficult to prove as well. Still, any help on my questions above would be great.










share|cite|improve this question









$endgroup$




I want to get an intuitive idea of the operation being "well-defined" for quotient groups. So, let's say I have a group $G$, with subgroup $H$, and let's say my set of left cosets is $G/K$. My lecture note says this: If $H$ is normal, then $G/H$ is a group under binary operation $aH circ bH = (ab)H$. So let's say I am asked whether $G/H$ forms a group where $H$ is not normal, and I have already determined that. My professor referred to the following which I am not sure if I totally understand:



Show that there are $a, b, a', b' in G$ such that $ aH = a'H$ and $bH = b'H$ but $aH circ bH = (ab)H neq a'H circ b'H = (a'b')H$, and you are done, and I did what she suggested, but I am not sure what is going on. So,



$1.$ What did I exactly show by proving what my professor suggested?



$2.$ In general, is it a strategy that every time you have to prove $G/H$ does not form a group for a non-normal $H$, you show that the operation is not well-defined?



Also, a quick google search also showed me that the theorem that talks about $G/K$ forming a group is an "if and only if" statement and not difficult to prove as well. Still, any help on my questions above would be great.







abstract-algebra group-theory






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 5 hours ago









UfomammutUfomammut

381314




381314








  • 5




    $begingroup$
    For multiplication of cosets to be well-defined you have to get the same answer no matter which representative of the cosets you choose
    $endgroup$
    – J. W. Tanner
    4 hours ago








  • 1




    $begingroup$
    If $C,D$ are cosets of $H$, we'd like to define $C*D$ by taking a random element of $a in C$ and a random element of $b in D$ and define $C*D = E$ where $E$ is the coset containing $ab$. But we've made a random choice here, so we would expect $E$ to also be "random". But as it turns out, we get the same result $E$ no matter what $a, b$ we pick. That's what we mean when we say the operation is well-defined. In general, to prove something is well-defined means to prove that the "random" choices we made during the construction don't change the result.
    $endgroup$
    – Jair Taylor
    4 hours ago














  • 5




    $begingroup$
    For multiplication of cosets to be well-defined you have to get the same answer no matter which representative of the cosets you choose
    $endgroup$
    – J. W. Tanner
    4 hours ago








  • 1




    $begingroup$
    If $C,D$ are cosets of $H$, we'd like to define $C*D$ by taking a random element of $a in C$ and a random element of $b in D$ and define $C*D = E$ where $E$ is the coset containing $ab$. But we've made a random choice here, so we would expect $E$ to also be "random". But as it turns out, we get the same result $E$ no matter what $a, b$ we pick. That's what we mean when we say the operation is well-defined. In general, to prove something is well-defined means to prove that the "random" choices we made during the construction don't change the result.
    $endgroup$
    – Jair Taylor
    4 hours ago








5




5




$begingroup$
For multiplication of cosets to be well-defined you have to get the same answer no matter which representative of the cosets you choose
$endgroup$
– J. W. Tanner
4 hours ago






$begingroup$
For multiplication of cosets to be well-defined you have to get the same answer no matter which representative of the cosets you choose
$endgroup$
– J. W. Tanner
4 hours ago






1




1




$begingroup$
If $C,D$ are cosets of $H$, we'd like to define $C*D$ by taking a random element of $a in C$ and a random element of $b in D$ and define $C*D = E$ where $E$ is the coset containing $ab$. But we've made a random choice here, so we would expect $E$ to also be "random". But as it turns out, we get the same result $E$ no matter what $a, b$ we pick. That's what we mean when we say the operation is well-defined. In general, to prove something is well-defined means to prove that the "random" choices we made during the construction don't change the result.
$endgroup$
– Jair Taylor
4 hours ago




$begingroup$
If $C,D$ are cosets of $H$, we'd like to define $C*D$ by taking a random element of $a in C$ and a random element of $b in D$ and define $C*D = E$ where $E$ is the coset containing $ab$. But we've made a random choice here, so we would expect $E$ to also be "random". But as it turns out, we get the same result $E$ no matter what $a, b$ we pick. That's what we mean when we say the operation is well-defined. In general, to prove something is well-defined means to prove that the "random" choices we made during the construction don't change the result.
$endgroup$
– Jair Taylor
4 hours ago










2 Answers
2






active

oldest

votes


















7












$begingroup$

In general, mathematicians use the phrase "well defined" when a definition is written in a form that depends (or, rather, seems to depend) on some more or less arbitrary choice. If you make such a definition, you are obligated to show that another choice that satisfied appropriate conditions would lead to the same result.



In a group the product $abc$ is well defined to be $(ab)c$ because its value does not depend on your choice of where to put the parentheses: associativity guarantees $(ab)c = a(bc)$. This fact is so intuitively clear that it's often not made explicit in a beginning algebra course.



When considering quotient groups, you want to define the multiplication of two cosets by choosing an element from each, multiplying them together, and taking the coset of the product. This coset product will be well defined only when the coset of the product of the two group elements does not depend on which ones you happened to choose. The sum of any two odd numbers will be even, so the product of cosets
$(2mathbb{Z} + 1) circ (2mathbb{Z} + 1)$ is $2mathbb{Z}$.



There is an alternative definition. You can define the product of two cosets $A$ and $B$ as
$$
A circ B = { ab | a in A text{ and } b in B }.
$$

This definition does not make any arbitrary choices, but you don't know that the set so defined is really a coset until you prove it.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    I do not know if what I am asking makes sense, but is the way the binary operation between two sets of the set of cosets is defined always the same? Also, getting back to my question, is this equivalent to proving closure under the binary operation?
    $endgroup$
    – Ufomammut
    4 hours ago






  • 1




    $begingroup$
    Closure is a bit of a red herring. In your definition of the coset product you always get a coset as the result. The issue is proving that the particular coset is independent of the choices. In my alternative definition you have to prove that a particular set is a coset. Closure only comes up when you already have an operation defined and you want to show you don't leave some subset. So the set of odd integers is not closed under addition.
    $endgroup$
    – Ethan Bolker
    4 hours ago



















5












$begingroup$

Perhaps a concrete example will make it clearer?



We need a non-abelian group. Let's take the simplest one there is, namely $G=S_3$.



We need a non-normal subgroup. Let's take $H={e,(12)}$.



We need two different cosets, and it won't work with H itself, so we have to take
$$ a=(23) qquad aH = {(23),(132)} = a'H qquad a'=(132) $$
$$ b=(13) qquad bH = {(13),(123)} = b'H qquad b'=(123) $$



Now, if we had a quotient group what should the product ${(23),(132)}circ{(13),(123)}$ be?



From one perspective we have
$$(23)Hcirc(13)H =^? (123)H$$
But we could also say
$$(123)Hcirc(132)H =^? eH = H$$



But the product of the coset ${(12),(132)}$ with the coset ${(23),(123)}$ cannot be allowed to depend on what we choose to call those cosets. And here we have two calculations that say they should be two different things! So we're in trouble.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    The example helped a lot. Great explanation.
    $endgroup$
    – Ufomammut
    4 hours ago












Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3181739%2funderstanding-the-implication-of-what-well-defined-means-for-the-operation-in%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









7












$begingroup$

In general, mathematicians use the phrase "well defined" when a definition is written in a form that depends (or, rather, seems to depend) on some more or less arbitrary choice. If you make such a definition, you are obligated to show that another choice that satisfied appropriate conditions would lead to the same result.



In a group the product $abc$ is well defined to be $(ab)c$ because its value does not depend on your choice of where to put the parentheses: associativity guarantees $(ab)c = a(bc)$. This fact is so intuitively clear that it's often not made explicit in a beginning algebra course.



When considering quotient groups, you want to define the multiplication of two cosets by choosing an element from each, multiplying them together, and taking the coset of the product. This coset product will be well defined only when the coset of the product of the two group elements does not depend on which ones you happened to choose. The sum of any two odd numbers will be even, so the product of cosets
$(2mathbb{Z} + 1) circ (2mathbb{Z} + 1)$ is $2mathbb{Z}$.



There is an alternative definition. You can define the product of two cosets $A$ and $B$ as
$$
A circ B = { ab | a in A text{ and } b in B }.
$$

This definition does not make any arbitrary choices, but you don't know that the set so defined is really a coset until you prove it.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    I do not know if what I am asking makes sense, but is the way the binary operation between two sets of the set of cosets is defined always the same? Also, getting back to my question, is this equivalent to proving closure under the binary operation?
    $endgroup$
    – Ufomammut
    4 hours ago






  • 1




    $begingroup$
    Closure is a bit of a red herring. In your definition of the coset product you always get a coset as the result. The issue is proving that the particular coset is independent of the choices. In my alternative definition you have to prove that a particular set is a coset. Closure only comes up when you already have an operation defined and you want to show you don't leave some subset. So the set of odd integers is not closed under addition.
    $endgroup$
    – Ethan Bolker
    4 hours ago
















7












$begingroup$

In general, mathematicians use the phrase "well defined" when a definition is written in a form that depends (or, rather, seems to depend) on some more or less arbitrary choice. If you make such a definition, you are obligated to show that another choice that satisfied appropriate conditions would lead to the same result.



In a group the product $abc$ is well defined to be $(ab)c$ because its value does not depend on your choice of where to put the parentheses: associativity guarantees $(ab)c = a(bc)$. This fact is so intuitively clear that it's often not made explicit in a beginning algebra course.



When considering quotient groups, you want to define the multiplication of two cosets by choosing an element from each, multiplying them together, and taking the coset of the product. This coset product will be well defined only when the coset of the product of the two group elements does not depend on which ones you happened to choose. The sum of any two odd numbers will be even, so the product of cosets
$(2mathbb{Z} + 1) circ (2mathbb{Z} + 1)$ is $2mathbb{Z}$.



There is an alternative definition. You can define the product of two cosets $A$ and $B$ as
$$
A circ B = { ab | a in A text{ and } b in B }.
$$

This definition does not make any arbitrary choices, but you don't know that the set so defined is really a coset until you prove it.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    I do not know if what I am asking makes sense, but is the way the binary operation between two sets of the set of cosets is defined always the same? Also, getting back to my question, is this equivalent to proving closure under the binary operation?
    $endgroup$
    – Ufomammut
    4 hours ago






  • 1




    $begingroup$
    Closure is a bit of a red herring. In your definition of the coset product you always get a coset as the result. The issue is proving that the particular coset is independent of the choices. In my alternative definition you have to prove that a particular set is a coset. Closure only comes up when you already have an operation defined and you want to show you don't leave some subset. So the set of odd integers is not closed under addition.
    $endgroup$
    – Ethan Bolker
    4 hours ago














7












7








7





$begingroup$

In general, mathematicians use the phrase "well defined" when a definition is written in a form that depends (or, rather, seems to depend) on some more or less arbitrary choice. If you make such a definition, you are obligated to show that another choice that satisfied appropriate conditions would lead to the same result.



In a group the product $abc$ is well defined to be $(ab)c$ because its value does not depend on your choice of where to put the parentheses: associativity guarantees $(ab)c = a(bc)$. This fact is so intuitively clear that it's often not made explicit in a beginning algebra course.



When considering quotient groups, you want to define the multiplication of two cosets by choosing an element from each, multiplying them together, and taking the coset of the product. This coset product will be well defined only when the coset of the product of the two group elements does not depend on which ones you happened to choose. The sum of any two odd numbers will be even, so the product of cosets
$(2mathbb{Z} + 1) circ (2mathbb{Z} + 1)$ is $2mathbb{Z}$.



There is an alternative definition. You can define the product of two cosets $A$ and $B$ as
$$
A circ B = { ab | a in A text{ and } b in B }.
$$

This definition does not make any arbitrary choices, but you don't know that the set so defined is really a coset until you prove it.






share|cite|improve this answer











$endgroup$



In general, mathematicians use the phrase "well defined" when a definition is written in a form that depends (or, rather, seems to depend) on some more or less arbitrary choice. If you make such a definition, you are obligated to show that another choice that satisfied appropriate conditions would lead to the same result.



In a group the product $abc$ is well defined to be $(ab)c$ because its value does not depend on your choice of where to put the parentheses: associativity guarantees $(ab)c = a(bc)$. This fact is so intuitively clear that it's often not made explicit in a beginning algebra course.



When considering quotient groups, you want to define the multiplication of two cosets by choosing an element from each, multiplying them together, and taking the coset of the product. This coset product will be well defined only when the coset of the product of the two group elements does not depend on which ones you happened to choose. The sum of any two odd numbers will be even, so the product of cosets
$(2mathbb{Z} + 1) circ (2mathbb{Z} + 1)$ is $2mathbb{Z}$.



There is an alternative definition. You can define the product of two cosets $A$ and $B$ as
$$
A circ B = { ab | a in A text{ and } b in B }.
$$

This definition does not make any arbitrary choices, but you don't know that the set so defined is really a coset until you prove it.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 4 hours ago

























answered 4 hours ago









Ethan BolkerEthan Bolker

45.9k553120




45.9k553120












  • $begingroup$
    I do not know if what I am asking makes sense, but is the way the binary operation between two sets of the set of cosets is defined always the same? Also, getting back to my question, is this equivalent to proving closure under the binary operation?
    $endgroup$
    – Ufomammut
    4 hours ago






  • 1




    $begingroup$
    Closure is a bit of a red herring. In your definition of the coset product you always get a coset as the result. The issue is proving that the particular coset is independent of the choices. In my alternative definition you have to prove that a particular set is a coset. Closure only comes up when you already have an operation defined and you want to show you don't leave some subset. So the set of odd integers is not closed under addition.
    $endgroup$
    – Ethan Bolker
    4 hours ago


















  • $begingroup$
    I do not know if what I am asking makes sense, but is the way the binary operation between two sets of the set of cosets is defined always the same? Also, getting back to my question, is this equivalent to proving closure under the binary operation?
    $endgroup$
    – Ufomammut
    4 hours ago






  • 1




    $begingroup$
    Closure is a bit of a red herring. In your definition of the coset product you always get a coset as the result. The issue is proving that the particular coset is independent of the choices. In my alternative definition you have to prove that a particular set is a coset. Closure only comes up when you already have an operation defined and you want to show you don't leave some subset. So the set of odd integers is not closed under addition.
    $endgroup$
    – Ethan Bolker
    4 hours ago
















$begingroup$
I do not know if what I am asking makes sense, but is the way the binary operation between two sets of the set of cosets is defined always the same? Also, getting back to my question, is this equivalent to proving closure under the binary operation?
$endgroup$
– Ufomammut
4 hours ago




$begingroup$
I do not know if what I am asking makes sense, but is the way the binary operation between two sets of the set of cosets is defined always the same? Also, getting back to my question, is this equivalent to proving closure under the binary operation?
$endgroup$
– Ufomammut
4 hours ago




1




1




$begingroup$
Closure is a bit of a red herring. In your definition of the coset product you always get a coset as the result. The issue is proving that the particular coset is independent of the choices. In my alternative definition you have to prove that a particular set is a coset. Closure only comes up when you already have an operation defined and you want to show you don't leave some subset. So the set of odd integers is not closed under addition.
$endgroup$
– Ethan Bolker
4 hours ago




$begingroup$
Closure is a bit of a red herring. In your definition of the coset product you always get a coset as the result. The issue is proving that the particular coset is independent of the choices. In my alternative definition you have to prove that a particular set is a coset. Closure only comes up when you already have an operation defined and you want to show you don't leave some subset. So the set of odd integers is not closed under addition.
$endgroup$
– Ethan Bolker
4 hours ago











5












$begingroup$

Perhaps a concrete example will make it clearer?



We need a non-abelian group. Let's take the simplest one there is, namely $G=S_3$.



We need a non-normal subgroup. Let's take $H={e,(12)}$.



We need two different cosets, and it won't work with H itself, so we have to take
$$ a=(23) qquad aH = {(23),(132)} = a'H qquad a'=(132) $$
$$ b=(13) qquad bH = {(13),(123)} = b'H qquad b'=(123) $$



Now, if we had a quotient group what should the product ${(23),(132)}circ{(13),(123)}$ be?



From one perspective we have
$$(23)Hcirc(13)H =^? (123)H$$
But we could also say
$$(123)Hcirc(132)H =^? eH = H$$



But the product of the coset ${(12),(132)}$ with the coset ${(23),(123)}$ cannot be allowed to depend on what we choose to call those cosets. And here we have two calculations that say they should be two different things! So we're in trouble.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    The example helped a lot. Great explanation.
    $endgroup$
    – Ufomammut
    4 hours ago
















5












$begingroup$

Perhaps a concrete example will make it clearer?



We need a non-abelian group. Let's take the simplest one there is, namely $G=S_3$.



We need a non-normal subgroup. Let's take $H={e,(12)}$.



We need two different cosets, and it won't work with H itself, so we have to take
$$ a=(23) qquad aH = {(23),(132)} = a'H qquad a'=(132) $$
$$ b=(13) qquad bH = {(13),(123)} = b'H qquad b'=(123) $$



Now, if we had a quotient group what should the product ${(23),(132)}circ{(13),(123)}$ be?



From one perspective we have
$$(23)Hcirc(13)H =^? (123)H$$
But we could also say
$$(123)Hcirc(132)H =^? eH = H$$



But the product of the coset ${(12),(132)}$ with the coset ${(23),(123)}$ cannot be allowed to depend on what we choose to call those cosets. And here we have two calculations that say they should be two different things! So we're in trouble.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    The example helped a lot. Great explanation.
    $endgroup$
    – Ufomammut
    4 hours ago














5












5








5





$begingroup$

Perhaps a concrete example will make it clearer?



We need a non-abelian group. Let's take the simplest one there is, namely $G=S_3$.



We need a non-normal subgroup. Let's take $H={e,(12)}$.



We need two different cosets, and it won't work with H itself, so we have to take
$$ a=(23) qquad aH = {(23),(132)} = a'H qquad a'=(132) $$
$$ b=(13) qquad bH = {(13),(123)} = b'H qquad b'=(123) $$



Now, if we had a quotient group what should the product ${(23),(132)}circ{(13),(123)}$ be?



From one perspective we have
$$(23)Hcirc(13)H =^? (123)H$$
But we could also say
$$(123)Hcirc(132)H =^? eH = H$$



But the product of the coset ${(12),(132)}$ with the coset ${(23),(123)}$ cannot be allowed to depend on what we choose to call those cosets. And here we have two calculations that say they should be two different things! So we're in trouble.






share|cite|improve this answer









$endgroup$



Perhaps a concrete example will make it clearer?



We need a non-abelian group. Let's take the simplest one there is, namely $G=S_3$.



We need a non-normal subgroup. Let's take $H={e,(12)}$.



We need two different cosets, and it won't work with H itself, so we have to take
$$ a=(23) qquad aH = {(23),(132)} = a'H qquad a'=(132) $$
$$ b=(13) qquad bH = {(13),(123)} = b'H qquad b'=(123) $$



Now, if we had a quotient group what should the product ${(23),(132)}circ{(13),(123)}$ be?



From one perspective we have
$$(23)Hcirc(13)H =^? (123)H$$
But we could also say
$$(123)Hcirc(132)H =^? eH = H$$



But the product of the coset ${(12),(132)}$ with the coset ${(23),(123)}$ cannot be allowed to depend on what we choose to call those cosets. And here we have two calculations that say they should be two different things! So we're in trouble.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered 4 hours ago









Henning MakholmHenning Makholm

243k17310554




243k17310554












  • $begingroup$
    The example helped a lot. Great explanation.
    $endgroup$
    – Ufomammut
    4 hours ago


















  • $begingroup$
    The example helped a lot. Great explanation.
    $endgroup$
    – Ufomammut
    4 hours ago
















$begingroup$
The example helped a lot. Great explanation.
$endgroup$
– Ufomammut
4 hours ago




$begingroup$
The example helped a lot. Great explanation.
$endgroup$
– Ufomammut
4 hours ago


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3181739%2funderstanding-the-implication-of-what-well-defined-means-for-the-operation-in%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Masuk log Menu navigasi

Identifying “long and narrow” polygons in with PostGISlength and width of polygonWhy postgis st_overlaps reports Qgis' “avoid intersections” generated polygon as overlapping with others?Adjusting polygons to boundary and filling holesDrawing polygons with fixed area?How to remove spikes in Polygons with PostGISDeleting sliver polygons after difference operation in QGIS?Snapping boundaries in PostGISSplit polygon into parts adding attributes based on underlying polygon in QGISSplitting overlap between polygons and assign to nearest polygon using PostGIS?Expanding polygons and clipping at midpoint?Removing Intersection of Buffers in Same Layers

Старые Смолеговицы Содержание История | География | Демография | Достопримечательности | Примечания | НавигацияHGЯOLHGЯOL41 206 832 01641 606 406 141Административно-территориальное деление Ленинградской области«Переписная оброчная книга Водской пятины 1500 года», С. 793«Карта Ингерманландии: Ивангорода, Яма, Копорья, Нотеборга», по материалам 1676 г.«Генеральная карта провинции Ингерманландии» Э. Белинга и А. Андерсина, 1704 г., составлена по материалам 1678 г.«Географический чертёж над Ижорскою землей со своими городами» Адриана Шонбека 1705 г.Новая и достоверная всей Ингерманландии ланткарта. Грав. А. Ростовцев. СПб., 1727 г.Топографическая карта Санкт-Петербургской губернии. 5-и верстка. Шуберт. 1834 г.Описание Санкт-Петербургской губернии по уездам и станамСпецкарта западной части России Ф. Ф. Шуберта. 1844 г.Алфавитный список селений по уездам и станам С.-Петербургской губернииСписки населённых мест Российской Империи, составленные и издаваемые центральным статистическим комитетом министерства внутренних дел. XXXVII. Санкт-Петербургская губерния. По состоянию на 1862 год. СПб. 1864. С. 203Материалы по статистике народного хозяйства в С.-Петербургской губернии. Вып. IX. Частновладельческое хозяйство в Ямбургском уезде. СПб, 1888, С. 146, С. 2, 7, 54Положение о гербе муниципального образования Курское сельское поселениеСправочник истории административно-территориального деления Ленинградской области.Топографическая карта Ленинградской области, квадрат О-35-23-В (Хотыницы), 1930 г.АрхивированоАдминистративно-территориальное деление Ленинградской области. — Л., 1933, С. 27, 198АрхивированоАдминистративно-экономический справочник по Ленинградской области. — Л., 1936, с. 219АрхивированоАдминистративно-территориальное деление Ленинградской области. — Л., 1966, с. 175АрхивированоАдминистративно-территориальное деление Ленинградской области. — Лениздат, 1973, С. 180АрхивированоАдминистративно-территориальное деление Ленинградской области. — Лениздат, 1990, ISBN 5-289-00612-5, С. 38АрхивированоАдминистративно-территориальное деление Ленинградской области. — СПб., 2007, с. 60АрхивированоКоряков Юрий База данных «Этно-языковой состав населённых пунктов России». Ленинградская область.Административно-территориальное деление Ленинградской области. — СПб, 1997, ISBN 5-86153-055-6, С. 41АрхивированоКультовый комплекс Старые Смолеговицы // Электронная энциклопедия ЭрмитажаПроблемы выявления, изучения и сохранения культовых комплексов с каменными крестами: по материалам работ 2016-2017 гг. в Ленинградской области