Open problems concerning all the finite groups
$begingroup$
What are the open problems concerning all the finite groups?
The references will be appreciated. Here are two examples:
Aschbacher-Guralnick conjecture (AG1984 p.447): the number of conjugacy classes of maximal subgroups of a finite group is at most its class number (i.e. the number of conjugacy classes of elements, or the number of irreducible complex representations up to equiv.).
K.S. Brown's problem (B2000 Q.4; SW2016 p.760): Let $G$ be a finite group, $mu$ be the Möbius function of its subgroup lattice $L(G)$. Then the sum $sum_{H in L(G)}mu(H,G)|G:H|$ is nonzero.
There are two types of problems, those involving an upper/lower bound (like Aschbacher-Guralnick conjecture) and those "exact", involving no bound (like K.S. Brown's problem). I guess the first type is much more abundant than the second, so for the first type, please restrict to the main problems.
gr.group-theory finite-groups big-list open-problems algebraic-combinatorics
$endgroup$
add a comment |
$begingroup$
What are the open problems concerning all the finite groups?
The references will be appreciated. Here are two examples:
Aschbacher-Guralnick conjecture (AG1984 p.447): the number of conjugacy classes of maximal subgroups of a finite group is at most its class number (i.e. the number of conjugacy classes of elements, or the number of irreducible complex representations up to equiv.).
K.S. Brown's problem (B2000 Q.4; SW2016 p.760): Let $G$ be a finite group, $mu$ be the Möbius function of its subgroup lattice $L(G)$. Then the sum $sum_{H in L(G)}mu(H,G)|G:H|$ is nonzero.
There are two types of problems, those involving an upper/lower bound (like Aschbacher-Guralnick conjecture) and those "exact", involving no bound (like K.S. Brown's problem). I guess the first type is much more abundant than the second, so for the first type, please restrict to the main problems.
gr.group-theory finite-groups big-list open-problems algebraic-combinatorics
$endgroup$
$begingroup$
It's not clear what's a theorem/problem about "all" finite groups. A theorem about nilpotent finite groups, for instance, can provide information to Sylow subgroups of all finite groups, etc. Many problems about "all" finite groups are treated by reduction to special subcases (e.g., simple groups).
$endgroup$
– YCor
yesterday
$begingroup$
I would suggest not to restrict to "all" finite group - just finite groups would be ok, imho. It does not seems to me that we get so many answers that it would be difficult to navigate, and subdivision to "all" - "not all" would be justified
$endgroup$
– Alexander Chervov
yesterday
1
$begingroup$
I like this open problem (mathoverflow.net/q/316434/61536) on prime factrization of finite groups: Can each finite group $G$ be written as the product $G=A_1cdots A_n$ of subsets of prime cardinality such that $|G|=|A_1|cdots|A_n|$?
$endgroup$
– Taras Banakh
yesterday
add a comment |
$begingroup$
What are the open problems concerning all the finite groups?
The references will be appreciated. Here are two examples:
Aschbacher-Guralnick conjecture (AG1984 p.447): the number of conjugacy classes of maximal subgroups of a finite group is at most its class number (i.e. the number of conjugacy classes of elements, or the number of irreducible complex representations up to equiv.).
K.S. Brown's problem (B2000 Q.4; SW2016 p.760): Let $G$ be a finite group, $mu$ be the Möbius function of its subgroup lattice $L(G)$. Then the sum $sum_{H in L(G)}mu(H,G)|G:H|$ is nonzero.
There are two types of problems, those involving an upper/lower bound (like Aschbacher-Guralnick conjecture) and those "exact", involving no bound (like K.S. Brown's problem). I guess the first type is much more abundant than the second, so for the first type, please restrict to the main problems.
gr.group-theory finite-groups big-list open-problems algebraic-combinatorics
$endgroup$
What are the open problems concerning all the finite groups?
The references will be appreciated. Here are two examples:
Aschbacher-Guralnick conjecture (AG1984 p.447): the number of conjugacy classes of maximal subgroups of a finite group is at most its class number (i.e. the number of conjugacy classes of elements, or the number of irreducible complex representations up to equiv.).
K.S. Brown's problem (B2000 Q.4; SW2016 p.760): Let $G$ be a finite group, $mu$ be the Möbius function of its subgroup lattice $L(G)$. Then the sum $sum_{H in L(G)}mu(H,G)|G:H|$ is nonzero.
There are two types of problems, those involving an upper/lower bound (like Aschbacher-Guralnick conjecture) and those "exact", involving no bound (like K.S. Brown's problem). I guess the first type is much more abundant than the second, so for the first type, please restrict to the main problems.
gr.group-theory finite-groups big-list open-problems algebraic-combinatorics
gr.group-theory finite-groups big-list open-problems algebraic-combinatorics
asked yesterday
Sebastien PalcouxSebastien Palcoux
8,173338107
8,173338107
$begingroup$
It's not clear what's a theorem/problem about "all" finite groups. A theorem about nilpotent finite groups, for instance, can provide information to Sylow subgroups of all finite groups, etc. Many problems about "all" finite groups are treated by reduction to special subcases (e.g., simple groups).
$endgroup$
– YCor
yesterday
$begingroup$
I would suggest not to restrict to "all" finite group - just finite groups would be ok, imho. It does not seems to me that we get so many answers that it would be difficult to navigate, and subdivision to "all" - "not all" would be justified
$endgroup$
– Alexander Chervov
yesterday
1
$begingroup$
I like this open problem (mathoverflow.net/q/316434/61536) on prime factrization of finite groups: Can each finite group $G$ be written as the product $G=A_1cdots A_n$ of subsets of prime cardinality such that $|G|=|A_1|cdots|A_n|$?
$endgroup$
– Taras Banakh
yesterday
add a comment |
$begingroup$
It's not clear what's a theorem/problem about "all" finite groups. A theorem about nilpotent finite groups, for instance, can provide information to Sylow subgroups of all finite groups, etc. Many problems about "all" finite groups are treated by reduction to special subcases (e.g., simple groups).
$endgroup$
– YCor
yesterday
$begingroup$
I would suggest not to restrict to "all" finite group - just finite groups would be ok, imho. It does not seems to me that we get so many answers that it would be difficult to navigate, and subdivision to "all" - "not all" would be justified
$endgroup$
– Alexander Chervov
yesterday
1
$begingroup$
I like this open problem (mathoverflow.net/q/316434/61536) on prime factrization of finite groups: Can each finite group $G$ be written as the product $G=A_1cdots A_n$ of subsets of prime cardinality such that $|G|=|A_1|cdots|A_n|$?
$endgroup$
– Taras Banakh
yesterday
$begingroup$
It's not clear what's a theorem/problem about "all" finite groups. A theorem about nilpotent finite groups, for instance, can provide information to Sylow subgroups of all finite groups, etc. Many problems about "all" finite groups are treated by reduction to special subcases (e.g., simple groups).
$endgroup$
– YCor
yesterday
$begingroup$
It's not clear what's a theorem/problem about "all" finite groups. A theorem about nilpotent finite groups, for instance, can provide information to Sylow subgroups of all finite groups, etc. Many problems about "all" finite groups are treated by reduction to special subcases (e.g., simple groups).
$endgroup$
– YCor
yesterday
$begingroup$
I would suggest not to restrict to "all" finite group - just finite groups would be ok, imho. It does not seems to me that we get so many answers that it would be difficult to navigate, and subdivision to "all" - "not all" would be justified
$endgroup$
– Alexander Chervov
yesterday
$begingroup$
I would suggest not to restrict to "all" finite group - just finite groups would be ok, imho. It does not seems to me that we get so many answers that it would be difficult to navigate, and subdivision to "all" - "not all" would be justified
$endgroup$
– Alexander Chervov
yesterday
1
1
$begingroup$
I like this open problem (mathoverflow.net/q/316434/61536) on prime factrization of finite groups: Can each finite group $G$ be written as the product $G=A_1cdots A_n$ of subsets of prime cardinality such that $|G|=|A_1|cdots|A_n|$?
$endgroup$
– Taras Banakh
yesterday
$begingroup$
I like this open problem (mathoverflow.net/q/316434/61536) on prime factrization of finite groups: Can each finite group $G$ be written as the product $G=A_1cdots A_n$ of subsets of prime cardinality such that $|G|=|A_1|cdots|A_n|$?
$endgroup$
– Taras Banakh
yesterday
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
There are plenty of examples; the below are taken from the Kourovka Notebook, and include a fairly broad range of topics.
- (4.55) Let $G$ be a finite group and $mathbb{Z}_p$ the localization at $p$. Does the Krull-Schmidt theorem hold for projective $mathbb{Z}_pG$-modules?
- (8.51) If $G$ is a finite group and $p$ a prime, let $m_p(G)$ denote the number of ordinary irreducible characters of $G$ whose degree is not divisible by $p$. Let $P$ be a Sylow $p$-subgroup of $G$. Is it true that $m_p(G) = m_p(N_G(P))$?
- (9.6) Is it true that an independent basis of quasiidentities of any finite group is finite?
A few other questions of a similar format to the questions you provided include (9.23), (11.17), (13.31), and (16.45).
The questions I picked are all of the form "Is $P$ true for all finite groups $G$?". There are many questions of the form "Characterize the finite groups $G$ for which $P$ holds", which to my ears has a slightly different ring to it than what you were asking for. There are also some questions regarding the class of finite groups, which again is a different interpretation.
Indeed, completely in line with Yves' comment, there is some ambiguity in what a problem for "all" finite groups should look like. Fortunately, there are enough problems in the Notebook to satisfy any interpretation, I should think.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "504"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f326199%2fopen-problems-concerning-all-the-finite-groups%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
There are plenty of examples; the below are taken from the Kourovka Notebook, and include a fairly broad range of topics.
- (4.55) Let $G$ be a finite group and $mathbb{Z}_p$ the localization at $p$. Does the Krull-Schmidt theorem hold for projective $mathbb{Z}_pG$-modules?
- (8.51) If $G$ is a finite group and $p$ a prime, let $m_p(G)$ denote the number of ordinary irreducible characters of $G$ whose degree is not divisible by $p$. Let $P$ be a Sylow $p$-subgroup of $G$. Is it true that $m_p(G) = m_p(N_G(P))$?
- (9.6) Is it true that an independent basis of quasiidentities of any finite group is finite?
A few other questions of a similar format to the questions you provided include (9.23), (11.17), (13.31), and (16.45).
The questions I picked are all of the form "Is $P$ true for all finite groups $G$?". There are many questions of the form "Characterize the finite groups $G$ for which $P$ holds", which to my ears has a slightly different ring to it than what you were asking for. There are also some questions regarding the class of finite groups, which again is a different interpretation.
Indeed, completely in line with Yves' comment, there is some ambiguity in what a problem for "all" finite groups should look like. Fortunately, there are enough problems in the Notebook to satisfy any interpretation, I should think.
$endgroup$
add a comment |
$begingroup$
There are plenty of examples; the below are taken from the Kourovka Notebook, and include a fairly broad range of topics.
- (4.55) Let $G$ be a finite group and $mathbb{Z}_p$ the localization at $p$. Does the Krull-Schmidt theorem hold for projective $mathbb{Z}_pG$-modules?
- (8.51) If $G$ is a finite group and $p$ a prime, let $m_p(G)$ denote the number of ordinary irreducible characters of $G$ whose degree is not divisible by $p$. Let $P$ be a Sylow $p$-subgroup of $G$. Is it true that $m_p(G) = m_p(N_G(P))$?
- (9.6) Is it true that an independent basis of quasiidentities of any finite group is finite?
A few other questions of a similar format to the questions you provided include (9.23), (11.17), (13.31), and (16.45).
The questions I picked are all of the form "Is $P$ true for all finite groups $G$?". There are many questions of the form "Characterize the finite groups $G$ for which $P$ holds", which to my ears has a slightly different ring to it than what you were asking for. There are also some questions regarding the class of finite groups, which again is a different interpretation.
Indeed, completely in line with Yves' comment, there is some ambiguity in what a problem for "all" finite groups should look like. Fortunately, there are enough problems in the Notebook to satisfy any interpretation, I should think.
$endgroup$
add a comment |
$begingroup$
There are plenty of examples; the below are taken from the Kourovka Notebook, and include a fairly broad range of topics.
- (4.55) Let $G$ be a finite group and $mathbb{Z}_p$ the localization at $p$. Does the Krull-Schmidt theorem hold for projective $mathbb{Z}_pG$-modules?
- (8.51) If $G$ is a finite group and $p$ a prime, let $m_p(G)$ denote the number of ordinary irreducible characters of $G$ whose degree is not divisible by $p$. Let $P$ be a Sylow $p$-subgroup of $G$. Is it true that $m_p(G) = m_p(N_G(P))$?
- (9.6) Is it true that an independent basis of quasiidentities of any finite group is finite?
A few other questions of a similar format to the questions you provided include (9.23), (11.17), (13.31), and (16.45).
The questions I picked are all of the form "Is $P$ true for all finite groups $G$?". There are many questions of the form "Characterize the finite groups $G$ for which $P$ holds", which to my ears has a slightly different ring to it than what you were asking for. There are also some questions regarding the class of finite groups, which again is a different interpretation.
Indeed, completely in line with Yves' comment, there is some ambiguity in what a problem for "all" finite groups should look like. Fortunately, there are enough problems in the Notebook to satisfy any interpretation, I should think.
$endgroup$
There are plenty of examples; the below are taken from the Kourovka Notebook, and include a fairly broad range of topics.
- (4.55) Let $G$ be a finite group and $mathbb{Z}_p$ the localization at $p$. Does the Krull-Schmidt theorem hold for projective $mathbb{Z}_pG$-modules?
- (8.51) If $G$ is a finite group and $p$ a prime, let $m_p(G)$ denote the number of ordinary irreducible characters of $G$ whose degree is not divisible by $p$. Let $P$ be a Sylow $p$-subgroup of $G$. Is it true that $m_p(G) = m_p(N_G(P))$?
- (9.6) Is it true that an independent basis of quasiidentities of any finite group is finite?
A few other questions of a similar format to the questions you provided include (9.23), (11.17), (13.31), and (16.45).
The questions I picked are all of the form "Is $P$ true for all finite groups $G$?". There are many questions of the form "Characterize the finite groups $G$ for which $P$ holds", which to my ears has a slightly different ring to it than what you were asking for. There are also some questions regarding the class of finite groups, which again is a different interpretation.
Indeed, completely in line with Yves' comment, there is some ambiguity in what a problem for "all" finite groups should look like. Fortunately, there are enough problems in the Notebook to satisfy any interpretation, I should think.
answered yesterday
Carl-Fredrik Nyberg BroddaCarl-Fredrik Nyberg Brodda
396210
396210
add a comment |
add a comment |
Thanks for contributing an answer to MathOverflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f326199%2fopen-problems-concerning-all-the-finite-groups%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
It's not clear what's a theorem/problem about "all" finite groups. A theorem about nilpotent finite groups, for instance, can provide information to Sylow subgroups of all finite groups, etc. Many problems about "all" finite groups are treated by reduction to special subcases (e.g., simple groups).
$endgroup$
– YCor
yesterday
$begingroup$
I would suggest not to restrict to "all" finite group - just finite groups would be ok, imho. It does not seems to me that we get so many answers that it would be difficult to navigate, and subdivision to "all" - "not all" would be justified
$endgroup$
– Alexander Chervov
yesterday
1
$begingroup$
I like this open problem (mathoverflow.net/q/316434/61536) on prime factrization of finite groups: Can each finite group $G$ be written as the product $G=A_1cdots A_n$ of subsets of prime cardinality such that $|G|=|A_1|cdots|A_n|$?
$endgroup$
– Taras Banakh
yesterday