Closed-form expression for certain product












9












$begingroup$


$mathrm G$ is Catalan's constant.



I recently found the product
$$
alpha=prod_{n=1}^{infty}frac{E_n(frac12)E_n(frac7{12})E_n(frac1{20})E_n(frac{13}{20})}{E_n(frac14)E_n(frac1{12})E_n(frac3{20})E_n(frac{11}{20})}=\
expleft[frac{47mathrm G}{30pi}+frac34right]sqrt{frac{33}{91pi}sqrt{frac2pifrac{sqrt[5]{11}}{sqrt[3]{7}}sqrt[5]{frac{3^3}{13^{3}}}}}$$



Where $$E_n(x)=frac{j(n+x)}{(en)^{2x}j(n-x)}qquad xin(0,1)$$
and $j(x)=x^x$.




Could I have some numerical evidence, or better yet an alternate proof? My tools are limited to desmos, which cannot really handle infinite products. Thanks.






My Proof.



We define $$mathrm L(x)=frac1piint_0^{pi x}log(sin t)dt$$
And we use $$sin t=tprod_{ngeq1}left(1-frac{t^2}{pi^2 n^2}right)$$
To see that $$log(sin t)=log(t)+sum_{ngeq1}logfrac{pi^2n^2-t^2}{pi^2n^2}$$
Then integrate both sides over $[0,x]$ to get
$$pimathrm L(x/pi)=x(log x-1)+sum_{ngeq1}xlogbigg(1-frac{x^2}{pi^2n^2}bigg)-2x+pi nlogfrac{pi n+x}{pi n-x}$$
$$pimathrm L(x/pi)=logleft[frac{j(x)}{e^x}right]+sum_{ngeq1}logleft[frac{j(pi n+x)}{(epi n)^{2x}j(pi n-x)}right]$$
$xmapsto pi x$:
$$pimathrm L(x)=logleft[frac{j(pi x)}{e^{pi x}}right]+sum_{ngeq1}logleft[frac{j(pi n+pi x)}{(epi n)^{2pi x}j(pi n-pi x)}right]$$
$$mathrm L(x)=logleft[left(fracpi{e}right)^xj(x)right]+sum_{ngeq1}log E_n(x)$$
Then we define $$U(x)=prod_{ngeq1}E_n(x)$$
To see that $$U(x)=left(frac{e}{pi x}right)^xexpmathrm L(x)$$
Where we used $$sum_{n}log(a_n)=logleft[prod_{n}a_nright]$$
and the neat rules $$log(a^b)=log(e^{blog a})=blog a$$
$$log(a)pm b=logleft(e^{pm b}aright)$$
to simplify the expressions. Next, we define
$$P_{mu,nu}(a_1,a_2,dots,a_mu;b_1,b_2,dots,b_nu)=frac{prod_{i=1}^mu U(a_i)}{prod_{i=1}^nu U(b_i)}$$
And we see that
$$P_{mu,nu}(a_1,dots,a_mu;b_1,dots,b_nu)=prod_{ngeq1}frac{prod_{i=1}^mu E_n(a_i)}{prod_{i=1}^nu E_n(b_i)}$$
This gives $$P_{1,1}(x_1;x_2)=left(frac{e}{pi}right)^{x_1-x_2}frac{j(x_2)}{j(x_1)}expleft[mathrm L(x_1)-mathrm L(x_2)right]$$
Then we define $$mathrm{T}(x)=frac{1}{pi}int_0^{pi x}log(tan t)dt=mathrm L(x)-mathrm L(x+1/2)-frac12log2$$
To get that
$$P_{1,1}left(x;x+frac12right)=sqrt{frac{2pi}e},frac{j(x+1/2)}{j(x)}expmathrm T(x)$$
So we have
$$P_{2,2}left(x_1,x_2+frac12 ;x_2,x_1+frac12right)=frac{j(x_1+1/2)j(x_2)}{j(x_2+1/2)j(x_1)}expleft[mathrm T(x_1)-mathrm T(x_2)right]$$
Then using the identities
$$mathrm L(1/2)=-frac12log2$$
$$mathrm L(1/4)=frac{mathrm G}{2pi}-frac14log2$$
We get $$P_{1,1}left(frac12;frac14right)=frac1{(2pi)^{1/4}}expleft[frac{mathrm G}{2pi}+frac14right]tag{1}$$
From here, the identity
$$-mathrm T(1/12)=frac{2mathrm G}{3pi}$$
which gives
$$P_{1,1}left(frac7{12};frac1{12}right)=sqrt{frac6{7pisqrt[6]{7}}}expleft[frac{2mathrm G}{3pi}+frac12right]tag{2}$$
Then from here, the identity
$$mathrm T(1/20)-mathrm T(3/20)=frac{2mathrm G}{5pi}$$
gives $$P_{2,2}left(frac1{20},frac{13}{20};frac3{20},frac{11}{20}right)=left(frac{j(11)j(3)}{j(13)}right)^{1/20}expfrac{2mathrm G}{5pi}tag{3}$$
Then multiplying $(1),(2),$ and $(3)$, we have the desired result, namely
$$P_{4,4}left(frac12,frac7{12},frac1{20},frac{13}{20};frac14,frac1{12},frac3{20},frac{11}{20}right)=alpha$$










share|cite|improve this question









New contributor




clathratus is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$

















    9












    $begingroup$


    $mathrm G$ is Catalan's constant.



    I recently found the product
    $$
    alpha=prod_{n=1}^{infty}frac{E_n(frac12)E_n(frac7{12})E_n(frac1{20})E_n(frac{13}{20})}{E_n(frac14)E_n(frac1{12})E_n(frac3{20})E_n(frac{11}{20})}=\
    expleft[frac{47mathrm G}{30pi}+frac34right]sqrt{frac{33}{91pi}sqrt{frac2pifrac{sqrt[5]{11}}{sqrt[3]{7}}sqrt[5]{frac{3^3}{13^{3}}}}}$$



    Where $$E_n(x)=frac{j(n+x)}{(en)^{2x}j(n-x)}qquad xin(0,1)$$
    and $j(x)=x^x$.




    Could I have some numerical evidence, or better yet an alternate proof? My tools are limited to desmos, which cannot really handle infinite products. Thanks.






    My Proof.



    We define $$mathrm L(x)=frac1piint_0^{pi x}log(sin t)dt$$
    And we use $$sin t=tprod_{ngeq1}left(1-frac{t^2}{pi^2 n^2}right)$$
    To see that $$log(sin t)=log(t)+sum_{ngeq1}logfrac{pi^2n^2-t^2}{pi^2n^2}$$
    Then integrate both sides over $[0,x]$ to get
    $$pimathrm L(x/pi)=x(log x-1)+sum_{ngeq1}xlogbigg(1-frac{x^2}{pi^2n^2}bigg)-2x+pi nlogfrac{pi n+x}{pi n-x}$$
    $$pimathrm L(x/pi)=logleft[frac{j(x)}{e^x}right]+sum_{ngeq1}logleft[frac{j(pi n+x)}{(epi n)^{2x}j(pi n-x)}right]$$
    $xmapsto pi x$:
    $$pimathrm L(x)=logleft[frac{j(pi x)}{e^{pi x}}right]+sum_{ngeq1}logleft[frac{j(pi n+pi x)}{(epi n)^{2pi x}j(pi n-pi x)}right]$$
    $$mathrm L(x)=logleft[left(fracpi{e}right)^xj(x)right]+sum_{ngeq1}log E_n(x)$$
    Then we define $$U(x)=prod_{ngeq1}E_n(x)$$
    To see that $$U(x)=left(frac{e}{pi x}right)^xexpmathrm L(x)$$
    Where we used $$sum_{n}log(a_n)=logleft[prod_{n}a_nright]$$
    and the neat rules $$log(a^b)=log(e^{blog a})=blog a$$
    $$log(a)pm b=logleft(e^{pm b}aright)$$
    to simplify the expressions. Next, we define
    $$P_{mu,nu}(a_1,a_2,dots,a_mu;b_1,b_2,dots,b_nu)=frac{prod_{i=1}^mu U(a_i)}{prod_{i=1}^nu U(b_i)}$$
    And we see that
    $$P_{mu,nu}(a_1,dots,a_mu;b_1,dots,b_nu)=prod_{ngeq1}frac{prod_{i=1}^mu E_n(a_i)}{prod_{i=1}^nu E_n(b_i)}$$
    This gives $$P_{1,1}(x_1;x_2)=left(frac{e}{pi}right)^{x_1-x_2}frac{j(x_2)}{j(x_1)}expleft[mathrm L(x_1)-mathrm L(x_2)right]$$
    Then we define $$mathrm{T}(x)=frac{1}{pi}int_0^{pi x}log(tan t)dt=mathrm L(x)-mathrm L(x+1/2)-frac12log2$$
    To get that
    $$P_{1,1}left(x;x+frac12right)=sqrt{frac{2pi}e},frac{j(x+1/2)}{j(x)}expmathrm T(x)$$
    So we have
    $$P_{2,2}left(x_1,x_2+frac12 ;x_2,x_1+frac12right)=frac{j(x_1+1/2)j(x_2)}{j(x_2+1/2)j(x_1)}expleft[mathrm T(x_1)-mathrm T(x_2)right]$$
    Then using the identities
    $$mathrm L(1/2)=-frac12log2$$
    $$mathrm L(1/4)=frac{mathrm G}{2pi}-frac14log2$$
    We get $$P_{1,1}left(frac12;frac14right)=frac1{(2pi)^{1/4}}expleft[frac{mathrm G}{2pi}+frac14right]tag{1}$$
    From here, the identity
    $$-mathrm T(1/12)=frac{2mathrm G}{3pi}$$
    which gives
    $$P_{1,1}left(frac7{12};frac1{12}right)=sqrt{frac6{7pisqrt[6]{7}}}expleft[frac{2mathrm G}{3pi}+frac12right]tag{2}$$
    Then from here, the identity
    $$mathrm T(1/20)-mathrm T(3/20)=frac{2mathrm G}{5pi}$$
    gives $$P_{2,2}left(frac1{20},frac{13}{20};frac3{20},frac{11}{20}right)=left(frac{j(11)j(3)}{j(13)}right)^{1/20}expfrac{2mathrm G}{5pi}tag{3}$$
    Then multiplying $(1),(2),$ and $(3)$, we have the desired result, namely
    $$P_{4,4}left(frac12,frac7{12},frac1{20},frac{13}{20};frac14,frac1{12},frac3{20},frac{11}{20}right)=alpha$$










    share|cite|improve this question









    New contributor




    clathratus is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$















      9












      9








      9


      1



      $begingroup$


      $mathrm G$ is Catalan's constant.



      I recently found the product
      $$
      alpha=prod_{n=1}^{infty}frac{E_n(frac12)E_n(frac7{12})E_n(frac1{20})E_n(frac{13}{20})}{E_n(frac14)E_n(frac1{12})E_n(frac3{20})E_n(frac{11}{20})}=\
      expleft[frac{47mathrm G}{30pi}+frac34right]sqrt{frac{33}{91pi}sqrt{frac2pifrac{sqrt[5]{11}}{sqrt[3]{7}}sqrt[5]{frac{3^3}{13^{3}}}}}$$



      Where $$E_n(x)=frac{j(n+x)}{(en)^{2x}j(n-x)}qquad xin(0,1)$$
      and $j(x)=x^x$.




      Could I have some numerical evidence, or better yet an alternate proof? My tools are limited to desmos, which cannot really handle infinite products. Thanks.






      My Proof.



      We define $$mathrm L(x)=frac1piint_0^{pi x}log(sin t)dt$$
      And we use $$sin t=tprod_{ngeq1}left(1-frac{t^2}{pi^2 n^2}right)$$
      To see that $$log(sin t)=log(t)+sum_{ngeq1}logfrac{pi^2n^2-t^2}{pi^2n^2}$$
      Then integrate both sides over $[0,x]$ to get
      $$pimathrm L(x/pi)=x(log x-1)+sum_{ngeq1}xlogbigg(1-frac{x^2}{pi^2n^2}bigg)-2x+pi nlogfrac{pi n+x}{pi n-x}$$
      $$pimathrm L(x/pi)=logleft[frac{j(x)}{e^x}right]+sum_{ngeq1}logleft[frac{j(pi n+x)}{(epi n)^{2x}j(pi n-x)}right]$$
      $xmapsto pi x$:
      $$pimathrm L(x)=logleft[frac{j(pi x)}{e^{pi x}}right]+sum_{ngeq1}logleft[frac{j(pi n+pi x)}{(epi n)^{2pi x}j(pi n-pi x)}right]$$
      $$mathrm L(x)=logleft[left(fracpi{e}right)^xj(x)right]+sum_{ngeq1}log E_n(x)$$
      Then we define $$U(x)=prod_{ngeq1}E_n(x)$$
      To see that $$U(x)=left(frac{e}{pi x}right)^xexpmathrm L(x)$$
      Where we used $$sum_{n}log(a_n)=logleft[prod_{n}a_nright]$$
      and the neat rules $$log(a^b)=log(e^{blog a})=blog a$$
      $$log(a)pm b=logleft(e^{pm b}aright)$$
      to simplify the expressions. Next, we define
      $$P_{mu,nu}(a_1,a_2,dots,a_mu;b_1,b_2,dots,b_nu)=frac{prod_{i=1}^mu U(a_i)}{prod_{i=1}^nu U(b_i)}$$
      And we see that
      $$P_{mu,nu}(a_1,dots,a_mu;b_1,dots,b_nu)=prod_{ngeq1}frac{prod_{i=1}^mu E_n(a_i)}{prod_{i=1}^nu E_n(b_i)}$$
      This gives $$P_{1,1}(x_1;x_2)=left(frac{e}{pi}right)^{x_1-x_2}frac{j(x_2)}{j(x_1)}expleft[mathrm L(x_1)-mathrm L(x_2)right]$$
      Then we define $$mathrm{T}(x)=frac{1}{pi}int_0^{pi x}log(tan t)dt=mathrm L(x)-mathrm L(x+1/2)-frac12log2$$
      To get that
      $$P_{1,1}left(x;x+frac12right)=sqrt{frac{2pi}e},frac{j(x+1/2)}{j(x)}expmathrm T(x)$$
      So we have
      $$P_{2,2}left(x_1,x_2+frac12 ;x_2,x_1+frac12right)=frac{j(x_1+1/2)j(x_2)}{j(x_2+1/2)j(x_1)}expleft[mathrm T(x_1)-mathrm T(x_2)right]$$
      Then using the identities
      $$mathrm L(1/2)=-frac12log2$$
      $$mathrm L(1/4)=frac{mathrm G}{2pi}-frac14log2$$
      We get $$P_{1,1}left(frac12;frac14right)=frac1{(2pi)^{1/4}}expleft[frac{mathrm G}{2pi}+frac14right]tag{1}$$
      From here, the identity
      $$-mathrm T(1/12)=frac{2mathrm G}{3pi}$$
      which gives
      $$P_{1,1}left(frac7{12};frac1{12}right)=sqrt{frac6{7pisqrt[6]{7}}}expleft[frac{2mathrm G}{3pi}+frac12right]tag{2}$$
      Then from here, the identity
      $$mathrm T(1/20)-mathrm T(3/20)=frac{2mathrm G}{5pi}$$
      gives $$P_{2,2}left(frac1{20},frac{13}{20};frac3{20},frac{11}{20}right)=left(frac{j(11)j(3)}{j(13)}right)^{1/20}expfrac{2mathrm G}{5pi}tag{3}$$
      Then multiplying $(1),(2),$ and $(3)$, we have the desired result, namely
      $$P_{4,4}left(frac12,frac7{12},frac1{20},frac{13}{20};frac14,frac1{12},frac3{20},frac{11}{20}right)=alpha$$










      share|cite|improve this question









      New contributor




      clathratus is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      $mathrm G$ is Catalan's constant.



      I recently found the product
      $$
      alpha=prod_{n=1}^{infty}frac{E_n(frac12)E_n(frac7{12})E_n(frac1{20})E_n(frac{13}{20})}{E_n(frac14)E_n(frac1{12})E_n(frac3{20})E_n(frac{11}{20})}=\
      expleft[frac{47mathrm G}{30pi}+frac34right]sqrt{frac{33}{91pi}sqrt{frac2pifrac{sqrt[5]{11}}{sqrt[3]{7}}sqrt[5]{frac{3^3}{13^{3}}}}}$$



      Where $$E_n(x)=frac{j(n+x)}{(en)^{2x}j(n-x)}qquad xin(0,1)$$
      and $j(x)=x^x$.




      Could I have some numerical evidence, or better yet an alternate proof? My tools are limited to desmos, which cannot really handle infinite products. Thanks.






      My Proof.



      We define $$mathrm L(x)=frac1piint_0^{pi x}log(sin t)dt$$
      And we use $$sin t=tprod_{ngeq1}left(1-frac{t^2}{pi^2 n^2}right)$$
      To see that $$log(sin t)=log(t)+sum_{ngeq1}logfrac{pi^2n^2-t^2}{pi^2n^2}$$
      Then integrate both sides over $[0,x]$ to get
      $$pimathrm L(x/pi)=x(log x-1)+sum_{ngeq1}xlogbigg(1-frac{x^2}{pi^2n^2}bigg)-2x+pi nlogfrac{pi n+x}{pi n-x}$$
      $$pimathrm L(x/pi)=logleft[frac{j(x)}{e^x}right]+sum_{ngeq1}logleft[frac{j(pi n+x)}{(epi n)^{2x}j(pi n-x)}right]$$
      $xmapsto pi x$:
      $$pimathrm L(x)=logleft[frac{j(pi x)}{e^{pi x}}right]+sum_{ngeq1}logleft[frac{j(pi n+pi x)}{(epi n)^{2pi x}j(pi n-pi x)}right]$$
      $$mathrm L(x)=logleft[left(fracpi{e}right)^xj(x)right]+sum_{ngeq1}log E_n(x)$$
      Then we define $$U(x)=prod_{ngeq1}E_n(x)$$
      To see that $$U(x)=left(frac{e}{pi x}right)^xexpmathrm L(x)$$
      Where we used $$sum_{n}log(a_n)=logleft[prod_{n}a_nright]$$
      and the neat rules $$log(a^b)=log(e^{blog a})=blog a$$
      $$log(a)pm b=logleft(e^{pm b}aright)$$
      to simplify the expressions. Next, we define
      $$P_{mu,nu}(a_1,a_2,dots,a_mu;b_1,b_2,dots,b_nu)=frac{prod_{i=1}^mu U(a_i)}{prod_{i=1}^nu U(b_i)}$$
      And we see that
      $$P_{mu,nu}(a_1,dots,a_mu;b_1,dots,b_nu)=prod_{ngeq1}frac{prod_{i=1}^mu E_n(a_i)}{prod_{i=1}^nu E_n(b_i)}$$
      This gives $$P_{1,1}(x_1;x_2)=left(frac{e}{pi}right)^{x_1-x_2}frac{j(x_2)}{j(x_1)}expleft[mathrm L(x_1)-mathrm L(x_2)right]$$
      Then we define $$mathrm{T}(x)=frac{1}{pi}int_0^{pi x}log(tan t)dt=mathrm L(x)-mathrm L(x+1/2)-frac12log2$$
      To get that
      $$P_{1,1}left(x;x+frac12right)=sqrt{frac{2pi}e},frac{j(x+1/2)}{j(x)}expmathrm T(x)$$
      So we have
      $$P_{2,2}left(x_1,x_2+frac12 ;x_2,x_1+frac12right)=frac{j(x_1+1/2)j(x_2)}{j(x_2+1/2)j(x_1)}expleft[mathrm T(x_1)-mathrm T(x_2)right]$$
      Then using the identities
      $$mathrm L(1/2)=-frac12log2$$
      $$mathrm L(1/4)=frac{mathrm G}{2pi}-frac14log2$$
      We get $$P_{1,1}left(frac12;frac14right)=frac1{(2pi)^{1/4}}expleft[frac{mathrm G}{2pi}+frac14right]tag{1}$$
      From here, the identity
      $$-mathrm T(1/12)=frac{2mathrm G}{3pi}$$
      which gives
      $$P_{1,1}left(frac7{12};frac1{12}right)=sqrt{frac6{7pisqrt[6]{7}}}expleft[frac{2mathrm G}{3pi}+frac12right]tag{2}$$
      Then from here, the identity
      $$mathrm T(1/20)-mathrm T(3/20)=frac{2mathrm G}{5pi}$$
      gives $$P_{2,2}left(frac1{20},frac{13}{20};frac3{20},frac{11}{20}right)=left(frac{j(11)j(3)}{j(13)}right)^{1/20}expfrac{2mathrm G}{5pi}tag{3}$$
      Then multiplying $(1),(2),$ and $(3)$, we have the desired result, namely
      $$P_{4,4}left(frac12,frac7{12},frac1{20},frac{13}{20};frac14,frac1{12},frac3{20},frac{11}{20}right)=alpha$$







      integration alternative-proof products






      share|cite|improve this question









      New contributor




      clathratus is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|cite|improve this question









      New contributor




      clathratus is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|cite|improve this question




      share|cite|improve this question








      edited 2 days ago







      clathratus













      New contributor




      clathratus is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 2 days ago









      clathratusclathratus

      1485




      1485




      New contributor




      clathratus is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      clathratus is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      clathratus is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






















          4 Answers
          4






          active

          oldest

          votes


















          6












          $begingroup$

          the OP asks for some numerical evidence: plotted below is the constant $alpha$ minus the $prod_{n=1}^N$ of the expression in OP, as a function of $N$; so at least within 1 part in 1000 the infinite product does seem to converge from above to the stated constant.








          share|cite|improve this answer











          $endgroup$









          • 1




            $begingroup$
            This is perfect, thank you. What software did you use to plot this?
            $endgroup$
            – clathratus
            2 days ago










          • $begingroup$
            The downvote is mine.
            $endgroup$
            – user64494
            2 days ago










          • $begingroup$
            oh, this is just Mathematica output.
            $endgroup$
            – Carlo Beenakker
            2 days ago



















          3












          $begingroup$

          The following Mathematica code



          NProduct[(1/2 + n)^(1/2 + n)/(Exp[1]*n)^(2*1/2)/(n - 1/2)^(n - 
          1/2)*(7/12 + n)^(7/12 + n)/(Exp[1]*n)^(2*7/12)/(n - 7/12)^(n -
          7/12)*(1/20 + n)^(1/20 + n)/(Exp[1]*n)^(2*1/20)/(n - 1/20)^(n -
          1/20)*(13/20 + n)^(13/20 + n)/(Exp[1]*n)^(2*13/20)/(n -13/20)^(n -13/20)/
          ((1/4 + n)^(1/4 + n)/(Exp[1]*n)^(2*1/4)/(n -
          1/4)^(n - 1/4))/((1/12 + n)^(1/12 + n)/(Exp[1]*
          n)^(2*1/12)/(n - 1/12)^(n - 1/12))/((11/20 + n)^(11/20 +
          n)/(Exp[1]*n)^(2*11/20)/(n - 11/20)^(n - 11/20))/((3/20 +
          n)^(3/20 + n)/(Exp[1]*n)^(2*3/20)/(n - 3/20)^(n - 3/20)),
          {n,1,Infinity}, AccuracyGoal -> 3, WorkingPrecision -> 15]


          performs




          $0.78046 $




          If somebody verifies the above code, it would be kind of her/him.



          Addition. The Maple command for the product up to $100$



          Digits:=15:evalf(product((1/2+n)^(1/2+n)*(7/12+n)^(7/12+n)*(1/20+n)^(1/20+n)*(13/20+n)^(13/20+n)*(n-1/4)^(n-1/4)*(n-1/12)^(n-1/12)*(n-11/20)^(n-11/20)*(n-3/20)^(n-3/20)/(exp(1)*n*(n-1/2)^(n-1/2)*sqrt(exp(1)*n)*(n-7/12)^(n-7/12)*(n-1/20)^(n-1/20)*(n-13/20)^(n-13/20)*(1/4+n)^(1/4+n)*(1/12+n)^(1/12+n)*(11/20+n)^(11/20+n)*(3/20+n)^(3/20+n)), n = 1 .. 100));


          produces $0.781527175985084 $.



          Also



          N[Exp[47*Catalan/30/Pi + 3/4]*  Sqrt[33/91/Pi*Sqrt[2/Pi*11^(1/5)/7^(1/3)*3^(3/5)/13^(3/5)]], 15]



          $0.780459197412937 $




          Edit. A typo in the codes ($(n-1/2)^{n-1/2}$ instead of $(n-1/2)^{n-1}$) is corrected. That typo leads to incorrect results.






          share|cite|improve this answer











          $endgroup$





















            3












            $begingroup$

            Using the Maple code from user64494's answer (but using mul(evalf(...)) instead of evalf(product(...)) for greater efficiency, and 20 digits), I computed the product for 1000,2000,3000,4000 terms. It took about four minutes.



            The answers were: 0.78056641010997748236, 0.78056641010997748236, 0.78056641010997748236, 0.78056641010997748236.



            Now assuming that the product to $N$ terms has an asymptotic expansion $$a_0+a_1/N+a_2/N^2+a_3/N^3+cdots,$$ which can surely be proved but I didn't, extrapolation of these 4 values gives
            $$a_0approx 0.7804591974129376479,a_1approx 0.107, a_2approx -0.0463, a_3approx 0.0151.$$
            The value of $a_0$ agrees with the proposed infinite product 0.7804591974129374862 to 15 digits.



            ADDED: By evaluating $x^x$ as evalf(x)^x, the same computation runs in about 20 seconds even with twice the precision. Adding the product with 5000 terms, agreement to 20 digits is obtained.



            ADDED[2]: I don't know how it does it, but Maple's built-in code for numerical evaluation of infinite products takes mere seconds to confirm this to 200 digits.






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              Also really great! Thanks for all the hard effort! 20 digits of precision is good enough for me.
              $endgroup$
              – clathratus
              yesterday



















            3












            $begingroup$

            Following off of @user64494, the Mathematica code



            Product[(1/2 + n)^(1/2 + n)/(Exp[1]*n)^(2*1/2)/(n - 1/2)^(n -
            1/2)*(7/12 + n)^(7/12 + n)/(Exp[1]*n)^(2*7/12)/(n - 7/12)^(n -
            7/12)*(1/20 + n)^(1/20 + n)/(Exp[1]*n)^(2*1/20)/(n - 1/20)^(n -
            1/20)*(13/20 + n)^(13/20 + n)/(Exp[1]*n)^(2*13/20)/(n -
            13/20)^(n -
            13/20)/((1/4 + n)^(1/4 + n)/(Exp[1]*n)^(2*1/4)/(n -
            1/4)^(n - 1/4))/((1/12 + n)^(1/12 + n)/(Exp[1]*
            n)^(2*1/12)/(n - 1/12)^(n - 1/12))/((11/20 + n)^(11/20 +
            n)/(Exp[1]*n)^(2*11/20)/(n - 11/20)^(n - 11/20))/((3/20 +
            n)^(3/20 + n)/(Exp[1]*n)^(2*3/20)/(n - 3/20)^(n - 3/20)), {n,
            1, Infinity}]



            gives the closed form output



            $$frac{{2}^{1/4} 3^{13/20} 11^{11/20} 5^{frac{1}{5} zeta left(-1,-frac{1}{4}right)-frac{1}{480}} exp left(frac{1}{5} zeta ^{(1,0)}left(-1,-frac{1}{4}right)+zeta ^{(1,0)}left(-1,frac{19}{20}right)-zeta ^{(1,0)}left(-1,-frac{1}{20}right)+frac{97 C}{60 pi }+frac{361}{480}right)}{7^{7/12} 13^{13/20} pi ^{3/4} {Glaisher}^{1/40}}$$



            where Glaisher's constant is approximately 1.28243 and $zeta$ is the (generalized) Riemann zeta function. Evaluating the above mess to 20 decimal places gives



            $$0.780~459~197~412~937~486~21.$$






            share|cite|improve this answer










            New contributor




            erfink is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
            Check out our Code of Conduct.






            $endgroup$













            • $begingroup$
              Woah! I had no idea that Glaisher's constant was in here! Thanks.
              $endgroup$
              – clathratus
              yesterday











            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "504"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });






            clathratus is a new contributor. Be nice, and check out our Code of Conduct.










            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f326156%2fclosed-form-expression-for-certain-product%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            4 Answers
            4






            active

            oldest

            votes








            4 Answers
            4






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            6












            $begingroup$

            the OP asks for some numerical evidence: plotted below is the constant $alpha$ minus the $prod_{n=1}^N$ of the expression in OP, as a function of $N$; so at least within 1 part in 1000 the infinite product does seem to converge from above to the stated constant.








            share|cite|improve this answer











            $endgroup$









            • 1




              $begingroup$
              This is perfect, thank you. What software did you use to plot this?
              $endgroup$
              – clathratus
              2 days ago










            • $begingroup$
              The downvote is mine.
              $endgroup$
              – user64494
              2 days ago










            • $begingroup$
              oh, this is just Mathematica output.
              $endgroup$
              – Carlo Beenakker
              2 days ago
















            6












            $begingroup$

            the OP asks for some numerical evidence: plotted below is the constant $alpha$ minus the $prod_{n=1}^N$ of the expression in OP, as a function of $N$; so at least within 1 part in 1000 the infinite product does seem to converge from above to the stated constant.








            share|cite|improve this answer











            $endgroup$









            • 1




              $begingroup$
              This is perfect, thank you. What software did you use to plot this?
              $endgroup$
              – clathratus
              2 days ago










            • $begingroup$
              The downvote is mine.
              $endgroup$
              – user64494
              2 days ago










            • $begingroup$
              oh, this is just Mathematica output.
              $endgroup$
              – Carlo Beenakker
              2 days ago














            6












            6








            6





            $begingroup$

            the OP asks for some numerical evidence: plotted below is the constant $alpha$ minus the $prod_{n=1}^N$ of the expression in OP, as a function of $N$; so at least within 1 part in 1000 the infinite product does seem to converge from above to the stated constant.








            share|cite|improve this answer











            $endgroup$



            the OP asks for some numerical evidence: plotted below is the constant $alpha$ minus the $prod_{n=1}^N$ of the expression in OP, as a function of $N$; so at least within 1 part in 1000 the infinite product does seem to converge from above to the stated constant.









            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited 2 days ago

























            answered 2 days ago









            Carlo BeenakkerCarlo Beenakker

            79k9187290




            79k9187290








            • 1




              $begingroup$
              This is perfect, thank you. What software did you use to plot this?
              $endgroup$
              – clathratus
              2 days ago










            • $begingroup$
              The downvote is mine.
              $endgroup$
              – user64494
              2 days ago










            • $begingroup$
              oh, this is just Mathematica output.
              $endgroup$
              – Carlo Beenakker
              2 days ago














            • 1




              $begingroup$
              This is perfect, thank you. What software did you use to plot this?
              $endgroup$
              – clathratus
              2 days ago










            • $begingroup$
              The downvote is mine.
              $endgroup$
              – user64494
              2 days ago










            • $begingroup$
              oh, this is just Mathematica output.
              $endgroup$
              – Carlo Beenakker
              2 days ago








            1




            1




            $begingroup$
            This is perfect, thank you. What software did you use to plot this?
            $endgroup$
            – clathratus
            2 days ago




            $begingroup$
            This is perfect, thank you. What software did you use to plot this?
            $endgroup$
            – clathratus
            2 days ago












            $begingroup$
            The downvote is mine.
            $endgroup$
            – user64494
            2 days ago




            $begingroup$
            The downvote is mine.
            $endgroup$
            – user64494
            2 days ago












            $begingroup$
            oh, this is just Mathematica output.
            $endgroup$
            – Carlo Beenakker
            2 days ago




            $begingroup$
            oh, this is just Mathematica output.
            $endgroup$
            – Carlo Beenakker
            2 days ago











            3












            $begingroup$

            The following Mathematica code



            NProduct[(1/2 + n)^(1/2 + n)/(Exp[1]*n)^(2*1/2)/(n - 1/2)^(n - 
            1/2)*(7/12 + n)^(7/12 + n)/(Exp[1]*n)^(2*7/12)/(n - 7/12)^(n -
            7/12)*(1/20 + n)^(1/20 + n)/(Exp[1]*n)^(2*1/20)/(n - 1/20)^(n -
            1/20)*(13/20 + n)^(13/20 + n)/(Exp[1]*n)^(2*13/20)/(n -13/20)^(n -13/20)/
            ((1/4 + n)^(1/4 + n)/(Exp[1]*n)^(2*1/4)/(n -
            1/4)^(n - 1/4))/((1/12 + n)^(1/12 + n)/(Exp[1]*
            n)^(2*1/12)/(n - 1/12)^(n - 1/12))/((11/20 + n)^(11/20 +
            n)/(Exp[1]*n)^(2*11/20)/(n - 11/20)^(n - 11/20))/((3/20 +
            n)^(3/20 + n)/(Exp[1]*n)^(2*3/20)/(n - 3/20)^(n - 3/20)),
            {n,1,Infinity}, AccuracyGoal -> 3, WorkingPrecision -> 15]


            performs




            $0.78046 $




            If somebody verifies the above code, it would be kind of her/him.



            Addition. The Maple command for the product up to $100$



            Digits:=15:evalf(product((1/2+n)^(1/2+n)*(7/12+n)^(7/12+n)*(1/20+n)^(1/20+n)*(13/20+n)^(13/20+n)*(n-1/4)^(n-1/4)*(n-1/12)^(n-1/12)*(n-11/20)^(n-11/20)*(n-3/20)^(n-3/20)/(exp(1)*n*(n-1/2)^(n-1/2)*sqrt(exp(1)*n)*(n-7/12)^(n-7/12)*(n-1/20)^(n-1/20)*(n-13/20)^(n-13/20)*(1/4+n)^(1/4+n)*(1/12+n)^(1/12+n)*(11/20+n)^(11/20+n)*(3/20+n)^(3/20+n)), n = 1 .. 100));


            produces $0.781527175985084 $.



            Also



            N[Exp[47*Catalan/30/Pi + 3/4]*  Sqrt[33/91/Pi*Sqrt[2/Pi*11^(1/5)/7^(1/3)*3^(3/5)/13^(3/5)]], 15]



            $0.780459197412937 $




            Edit. A typo in the codes ($(n-1/2)^{n-1/2}$ instead of $(n-1/2)^{n-1}$) is corrected. That typo leads to incorrect results.






            share|cite|improve this answer











            $endgroup$


















              3












              $begingroup$

              The following Mathematica code



              NProduct[(1/2 + n)^(1/2 + n)/(Exp[1]*n)^(2*1/2)/(n - 1/2)^(n - 
              1/2)*(7/12 + n)^(7/12 + n)/(Exp[1]*n)^(2*7/12)/(n - 7/12)^(n -
              7/12)*(1/20 + n)^(1/20 + n)/(Exp[1]*n)^(2*1/20)/(n - 1/20)^(n -
              1/20)*(13/20 + n)^(13/20 + n)/(Exp[1]*n)^(2*13/20)/(n -13/20)^(n -13/20)/
              ((1/4 + n)^(1/4 + n)/(Exp[1]*n)^(2*1/4)/(n -
              1/4)^(n - 1/4))/((1/12 + n)^(1/12 + n)/(Exp[1]*
              n)^(2*1/12)/(n - 1/12)^(n - 1/12))/((11/20 + n)^(11/20 +
              n)/(Exp[1]*n)^(2*11/20)/(n - 11/20)^(n - 11/20))/((3/20 +
              n)^(3/20 + n)/(Exp[1]*n)^(2*3/20)/(n - 3/20)^(n - 3/20)),
              {n,1,Infinity}, AccuracyGoal -> 3, WorkingPrecision -> 15]


              performs




              $0.78046 $




              If somebody verifies the above code, it would be kind of her/him.



              Addition. The Maple command for the product up to $100$



              Digits:=15:evalf(product((1/2+n)^(1/2+n)*(7/12+n)^(7/12+n)*(1/20+n)^(1/20+n)*(13/20+n)^(13/20+n)*(n-1/4)^(n-1/4)*(n-1/12)^(n-1/12)*(n-11/20)^(n-11/20)*(n-3/20)^(n-3/20)/(exp(1)*n*(n-1/2)^(n-1/2)*sqrt(exp(1)*n)*(n-7/12)^(n-7/12)*(n-1/20)^(n-1/20)*(n-13/20)^(n-13/20)*(1/4+n)^(1/4+n)*(1/12+n)^(1/12+n)*(11/20+n)^(11/20+n)*(3/20+n)^(3/20+n)), n = 1 .. 100));


              produces $0.781527175985084 $.



              Also



              N[Exp[47*Catalan/30/Pi + 3/4]*  Sqrt[33/91/Pi*Sqrt[2/Pi*11^(1/5)/7^(1/3)*3^(3/5)/13^(3/5)]], 15]



              $0.780459197412937 $




              Edit. A typo in the codes ($(n-1/2)^{n-1/2}$ instead of $(n-1/2)^{n-1}$) is corrected. That typo leads to incorrect results.






              share|cite|improve this answer











              $endgroup$
















                3












                3








                3





                $begingroup$

                The following Mathematica code



                NProduct[(1/2 + n)^(1/2 + n)/(Exp[1]*n)^(2*1/2)/(n - 1/2)^(n - 
                1/2)*(7/12 + n)^(7/12 + n)/(Exp[1]*n)^(2*7/12)/(n - 7/12)^(n -
                7/12)*(1/20 + n)^(1/20 + n)/(Exp[1]*n)^(2*1/20)/(n - 1/20)^(n -
                1/20)*(13/20 + n)^(13/20 + n)/(Exp[1]*n)^(2*13/20)/(n -13/20)^(n -13/20)/
                ((1/4 + n)^(1/4 + n)/(Exp[1]*n)^(2*1/4)/(n -
                1/4)^(n - 1/4))/((1/12 + n)^(1/12 + n)/(Exp[1]*
                n)^(2*1/12)/(n - 1/12)^(n - 1/12))/((11/20 + n)^(11/20 +
                n)/(Exp[1]*n)^(2*11/20)/(n - 11/20)^(n - 11/20))/((3/20 +
                n)^(3/20 + n)/(Exp[1]*n)^(2*3/20)/(n - 3/20)^(n - 3/20)),
                {n,1,Infinity}, AccuracyGoal -> 3, WorkingPrecision -> 15]


                performs




                $0.78046 $




                If somebody verifies the above code, it would be kind of her/him.



                Addition. The Maple command for the product up to $100$



                Digits:=15:evalf(product((1/2+n)^(1/2+n)*(7/12+n)^(7/12+n)*(1/20+n)^(1/20+n)*(13/20+n)^(13/20+n)*(n-1/4)^(n-1/4)*(n-1/12)^(n-1/12)*(n-11/20)^(n-11/20)*(n-3/20)^(n-3/20)/(exp(1)*n*(n-1/2)^(n-1/2)*sqrt(exp(1)*n)*(n-7/12)^(n-7/12)*(n-1/20)^(n-1/20)*(n-13/20)^(n-13/20)*(1/4+n)^(1/4+n)*(1/12+n)^(1/12+n)*(11/20+n)^(11/20+n)*(3/20+n)^(3/20+n)), n = 1 .. 100));


                produces $0.781527175985084 $.



                Also



                N[Exp[47*Catalan/30/Pi + 3/4]*  Sqrt[33/91/Pi*Sqrt[2/Pi*11^(1/5)/7^(1/3)*3^(3/5)/13^(3/5)]], 15]



                $0.780459197412937 $




                Edit. A typo in the codes ($(n-1/2)^{n-1/2}$ instead of $(n-1/2)^{n-1}$) is corrected. That typo leads to incorrect results.






                share|cite|improve this answer











                $endgroup$



                The following Mathematica code



                NProduct[(1/2 + n)^(1/2 + n)/(Exp[1]*n)^(2*1/2)/(n - 1/2)^(n - 
                1/2)*(7/12 + n)^(7/12 + n)/(Exp[1]*n)^(2*7/12)/(n - 7/12)^(n -
                7/12)*(1/20 + n)^(1/20 + n)/(Exp[1]*n)^(2*1/20)/(n - 1/20)^(n -
                1/20)*(13/20 + n)^(13/20 + n)/(Exp[1]*n)^(2*13/20)/(n -13/20)^(n -13/20)/
                ((1/4 + n)^(1/4 + n)/(Exp[1]*n)^(2*1/4)/(n -
                1/4)^(n - 1/4))/((1/12 + n)^(1/12 + n)/(Exp[1]*
                n)^(2*1/12)/(n - 1/12)^(n - 1/12))/((11/20 + n)^(11/20 +
                n)/(Exp[1]*n)^(2*11/20)/(n - 11/20)^(n - 11/20))/((3/20 +
                n)^(3/20 + n)/(Exp[1]*n)^(2*3/20)/(n - 3/20)^(n - 3/20)),
                {n,1,Infinity}, AccuracyGoal -> 3, WorkingPrecision -> 15]


                performs




                $0.78046 $




                If somebody verifies the above code, it would be kind of her/him.



                Addition. The Maple command for the product up to $100$



                Digits:=15:evalf(product((1/2+n)^(1/2+n)*(7/12+n)^(7/12+n)*(1/20+n)^(1/20+n)*(13/20+n)^(13/20+n)*(n-1/4)^(n-1/4)*(n-1/12)^(n-1/12)*(n-11/20)^(n-11/20)*(n-3/20)^(n-3/20)/(exp(1)*n*(n-1/2)^(n-1/2)*sqrt(exp(1)*n)*(n-7/12)^(n-7/12)*(n-1/20)^(n-1/20)*(n-13/20)^(n-13/20)*(1/4+n)^(1/4+n)*(1/12+n)^(1/12+n)*(11/20+n)^(11/20+n)*(3/20+n)^(3/20+n)), n = 1 .. 100));


                produces $0.781527175985084 $.



                Also



                N[Exp[47*Catalan/30/Pi + 3/4]*  Sqrt[33/91/Pi*Sqrt[2/Pi*11^(1/5)/7^(1/3)*3^(3/5)/13^(3/5)]], 15]



                $0.780459197412937 $




                Edit. A typo in the codes ($(n-1/2)^{n-1/2}$ instead of $(n-1/2)^{n-1}$) is corrected. That typo leads to incorrect results.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited 2 days ago

























                answered 2 days ago









                user64494user64494

                1,749517




                1,749517























                    3












                    $begingroup$

                    Using the Maple code from user64494's answer (but using mul(evalf(...)) instead of evalf(product(...)) for greater efficiency, and 20 digits), I computed the product for 1000,2000,3000,4000 terms. It took about four minutes.



                    The answers were: 0.78056641010997748236, 0.78056641010997748236, 0.78056641010997748236, 0.78056641010997748236.



                    Now assuming that the product to $N$ terms has an asymptotic expansion $$a_0+a_1/N+a_2/N^2+a_3/N^3+cdots,$$ which can surely be proved but I didn't, extrapolation of these 4 values gives
                    $$a_0approx 0.7804591974129376479,a_1approx 0.107, a_2approx -0.0463, a_3approx 0.0151.$$
                    The value of $a_0$ agrees with the proposed infinite product 0.7804591974129374862 to 15 digits.



                    ADDED: By evaluating $x^x$ as evalf(x)^x, the same computation runs in about 20 seconds even with twice the precision. Adding the product with 5000 terms, agreement to 20 digits is obtained.



                    ADDED[2]: I don't know how it does it, but Maple's built-in code for numerical evaluation of infinite products takes mere seconds to confirm this to 200 digits.






                    share|cite|improve this answer











                    $endgroup$













                    • $begingroup$
                      Also really great! Thanks for all the hard effort! 20 digits of precision is good enough for me.
                      $endgroup$
                      – clathratus
                      yesterday
















                    3












                    $begingroup$

                    Using the Maple code from user64494's answer (but using mul(evalf(...)) instead of evalf(product(...)) for greater efficiency, and 20 digits), I computed the product for 1000,2000,3000,4000 terms. It took about four minutes.



                    The answers were: 0.78056641010997748236, 0.78056641010997748236, 0.78056641010997748236, 0.78056641010997748236.



                    Now assuming that the product to $N$ terms has an asymptotic expansion $$a_0+a_1/N+a_2/N^2+a_3/N^3+cdots,$$ which can surely be proved but I didn't, extrapolation of these 4 values gives
                    $$a_0approx 0.7804591974129376479,a_1approx 0.107, a_2approx -0.0463, a_3approx 0.0151.$$
                    The value of $a_0$ agrees with the proposed infinite product 0.7804591974129374862 to 15 digits.



                    ADDED: By evaluating $x^x$ as evalf(x)^x, the same computation runs in about 20 seconds even with twice the precision. Adding the product with 5000 terms, agreement to 20 digits is obtained.



                    ADDED[2]: I don't know how it does it, but Maple's built-in code for numerical evaluation of infinite products takes mere seconds to confirm this to 200 digits.






                    share|cite|improve this answer











                    $endgroup$













                    • $begingroup$
                      Also really great! Thanks for all the hard effort! 20 digits of precision is good enough for me.
                      $endgroup$
                      – clathratus
                      yesterday














                    3












                    3








                    3





                    $begingroup$

                    Using the Maple code from user64494's answer (but using mul(evalf(...)) instead of evalf(product(...)) for greater efficiency, and 20 digits), I computed the product for 1000,2000,3000,4000 terms. It took about four minutes.



                    The answers were: 0.78056641010997748236, 0.78056641010997748236, 0.78056641010997748236, 0.78056641010997748236.



                    Now assuming that the product to $N$ terms has an asymptotic expansion $$a_0+a_1/N+a_2/N^2+a_3/N^3+cdots,$$ which can surely be proved but I didn't, extrapolation of these 4 values gives
                    $$a_0approx 0.7804591974129376479,a_1approx 0.107, a_2approx -0.0463, a_3approx 0.0151.$$
                    The value of $a_0$ agrees with the proposed infinite product 0.7804591974129374862 to 15 digits.



                    ADDED: By evaluating $x^x$ as evalf(x)^x, the same computation runs in about 20 seconds even with twice the precision. Adding the product with 5000 terms, agreement to 20 digits is obtained.



                    ADDED[2]: I don't know how it does it, but Maple's built-in code for numerical evaluation of infinite products takes mere seconds to confirm this to 200 digits.






                    share|cite|improve this answer











                    $endgroup$



                    Using the Maple code from user64494's answer (but using mul(evalf(...)) instead of evalf(product(...)) for greater efficiency, and 20 digits), I computed the product for 1000,2000,3000,4000 terms. It took about four minutes.



                    The answers were: 0.78056641010997748236, 0.78056641010997748236, 0.78056641010997748236, 0.78056641010997748236.



                    Now assuming that the product to $N$ terms has an asymptotic expansion $$a_0+a_1/N+a_2/N^2+a_3/N^3+cdots,$$ which can surely be proved but I didn't, extrapolation of these 4 values gives
                    $$a_0approx 0.7804591974129376479,a_1approx 0.107, a_2approx -0.0463, a_3approx 0.0151.$$
                    The value of $a_0$ agrees with the proposed infinite product 0.7804591974129374862 to 15 digits.



                    ADDED: By evaluating $x^x$ as evalf(x)^x, the same computation runs in about 20 seconds even with twice the precision. Adding the product with 5000 terms, agreement to 20 digits is obtained.



                    ADDED[2]: I don't know how it does it, but Maple's built-in code for numerical evaluation of infinite products takes mere seconds to confirm this to 200 digits.







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited yesterday

























                    answered 2 days ago









                    Brendan McKayBrendan McKay

                    25.4k152107




                    25.4k152107












                    • $begingroup$
                      Also really great! Thanks for all the hard effort! 20 digits of precision is good enough for me.
                      $endgroup$
                      – clathratus
                      yesterday


















                    • $begingroup$
                      Also really great! Thanks for all the hard effort! 20 digits of precision is good enough for me.
                      $endgroup$
                      – clathratus
                      yesterday
















                    $begingroup$
                    Also really great! Thanks for all the hard effort! 20 digits of precision is good enough for me.
                    $endgroup$
                    – clathratus
                    yesterday




                    $begingroup$
                    Also really great! Thanks for all the hard effort! 20 digits of precision is good enough for me.
                    $endgroup$
                    – clathratus
                    yesterday











                    3












                    $begingroup$

                    Following off of @user64494, the Mathematica code



                    Product[(1/2 + n)^(1/2 + n)/(Exp[1]*n)^(2*1/2)/(n - 1/2)^(n -
                    1/2)*(7/12 + n)^(7/12 + n)/(Exp[1]*n)^(2*7/12)/(n - 7/12)^(n -
                    7/12)*(1/20 + n)^(1/20 + n)/(Exp[1]*n)^(2*1/20)/(n - 1/20)^(n -
                    1/20)*(13/20 + n)^(13/20 + n)/(Exp[1]*n)^(2*13/20)/(n -
                    13/20)^(n -
                    13/20)/((1/4 + n)^(1/4 + n)/(Exp[1]*n)^(2*1/4)/(n -
                    1/4)^(n - 1/4))/((1/12 + n)^(1/12 + n)/(Exp[1]*
                    n)^(2*1/12)/(n - 1/12)^(n - 1/12))/((11/20 + n)^(11/20 +
                    n)/(Exp[1]*n)^(2*11/20)/(n - 11/20)^(n - 11/20))/((3/20 +
                    n)^(3/20 + n)/(Exp[1]*n)^(2*3/20)/(n - 3/20)^(n - 3/20)), {n,
                    1, Infinity}]



                    gives the closed form output



                    $$frac{{2}^{1/4} 3^{13/20} 11^{11/20} 5^{frac{1}{5} zeta left(-1,-frac{1}{4}right)-frac{1}{480}} exp left(frac{1}{5} zeta ^{(1,0)}left(-1,-frac{1}{4}right)+zeta ^{(1,0)}left(-1,frac{19}{20}right)-zeta ^{(1,0)}left(-1,-frac{1}{20}right)+frac{97 C}{60 pi }+frac{361}{480}right)}{7^{7/12} 13^{13/20} pi ^{3/4} {Glaisher}^{1/40}}$$



                    where Glaisher's constant is approximately 1.28243 and $zeta$ is the (generalized) Riemann zeta function. Evaluating the above mess to 20 decimal places gives



                    $$0.780~459~197~412~937~486~21.$$






                    share|cite|improve this answer










                    New contributor




                    erfink is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                    Check out our Code of Conduct.






                    $endgroup$













                    • $begingroup$
                      Woah! I had no idea that Glaisher's constant was in here! Thanks.
                      $endgroup$
                      – clathratus
                      yesterday
















                    3












                    $begingroup$

                    Following off of @user64494, the Mathematica code



                    Product[(1/2 + n)^(1/2 + n)/(Exp[1]*n)^(2*1/2)/(n - 1/2)^(n -
                    1/2)*(7/12 + n)^(7/12 + n)/(Exp[1]*n)^(2*7/12)/(n - 7/12)^(n -
                    7/12)*(1/20 + n)^(1/20 + n)/(Exp[1]*n)^(2*1/20)/(n - 1/20)^(n -
                    1/20)*(13/20 + n)^(13/20 + n)/(Exp[1]*n)^(2*13/20)/(n -
                    13/20)^(n -
                    13/20)/((1/4 + n)^(1/4 + n)/(Exp[1]*n)^(2*1/4)/(n -
                    1/4)^(n - 1/4))/((1/12 + n)^(1/12 + n)/(Exp[1]*
                    n)^(2*1/12)/(n - 1/12)^(n - 1/12))/((11/20 + n)^(11/20 +
                    n)/(Exp[1]*n)^(2*11/20)/(n - 11/20)^(n - 11/20))/((3/20 +
                    n)^(3/20 + n)/(Exp[1]*n)^(2*3/20)/(n - 3/20)^(n - 3/20)), {n,
                    1, Infinity}]



                    gives the closed form output



                    $$frac{{2}^{1/4} 3^{13/20} 11^{11/20} 5^{frac{1}{5} zeta left(-1,-frac{1}{4}right)-frac{1}{480}} exp left(frac{1}{5} zeta ^{(1,0)}left(-1,-frac{1}{4}right)+zeta ^{(1,0)}left(-1,frac{19}{20}right)-zeta ^{(1,0)}left(-1,-frac{1}{20}right)+frac{97 C}{60 pi }+frac{361}{480}right)}{7^{7/12} 13^{13/20} pi ^{3/4} {Glaisher}^{1/40}}$$



                    where Glaisher's constant is approximately 1.28243 and $zeta$ is the (generalized) Riemann zeta function. Evaluating the above mess to 20 decimal places gives



                    $$0.780~459~197~412~937~486~21.$$






                    share|cite|improve this answer










                    New contributor




                    erfink is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                    Check out our Code of Conduct.






                    $endgroup$













                    • $begingroup$
                      Woah! I had no idea that Glaisher's constant was in here! Thanks.
                      $endgroup$
                      – clathratus
                      yesterday














                    3












                    3








                    3





                    $begingroup$

                    Following off of @user64494, the Mathematica code



                    Product[(1/2 + n)^(1/2 + n)/(Exp[1]*n)^(2*1/2)/(n - 1/2)^(n -
                    1/2)*(7/12 + n)^(7/12 + n)/(Exp[1]*n)^(2*7/12)/(n - 7/12)^(n -
                    7/12)*(1/20 + n)^(1/20 + n)/(Exp[1]*n)^(2*1/20)/(n - 1/20)^(n -
                    1/20)*(13/20 + n)^(13/20 + n)/(Exp[1]*n)^(2*13/20)/(n -
                    13/20)^(n -
                    13/20)/((1/4 + n)^(1/4 + n)/(Exp[1]*n)^(2*1/4)/(n -
                    1/4)^(n - 1/4))/((1/12 + n)^(1/12 + n)/(Exp[1]*
                    n)^(2*1/12)/(n - 1/12)^(n - 1/12))/((11/20 + n)^(11/20 +
                    n)/(Exp[1]*n)^(2*11/20)/(n - 11/20)^(n - 11/20))/((3/20 +
                    n)^(3/20 + n)/(Exp[1]*n)^(2*3/20)/(n - 3/20)^(n - 3/20)), {n,
                    1, Infinity}]



                    gives the closed form output



                    $$frac{{2}^{1/4} 3^{13/20} 11^{11/20} 5^{frac{1}{5} zeta left(-1,-frac{1}{4}right)-frac{1}{480}} exp left(frac{1}{5} zeta ^{(1,0)}left(-1,-frac{1}{4}right)+zeta ^{(1,0)}left(-1,frac{19}{20}right)-zeta ^{(1,0)}left(-1,-frac{1}{20}right)+frac{97 C}{60 pi }+frac{361}{480}right)}{7^{7/12} 13^{13/20} pi ^{3/4} {Glaisher}^{1/40}}$$



                    where Glaisher's constant is approximately 1.28243 and $zeta$ is the (generalized) Riemann zeta function. Evaluating the above mess to 20 decimal places gives



                    $$0.780~459~197~412~937~486~21.$$






                    share|cite|improve this answer










                    New contributor




                    erfink is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                    Check out our Code of Conduct.






                    $endgroup$



                    Following off of @user64494, the Mathematica code



                    Product[(1/2 + n)^(1/2 + n)/(Exp[1]*n)^(2*1/2)/(n - 1/2)^(n -
                    1/2)*(7/12 + n)^(7/12 + n)/(Exp[1]*n)^(2*7/12)/(n - 7/12)^(n -
                    7/12)*(1/20 + n)^(1/20 + n)/(Exp[1]*n)^(2*1/20)/(n - 1/20)^(n -
                    1/20)*(13/20 + n)^(13/20 + n)/(Exp[1]*n)^(2*13/20)/(n -
                    13/20)^(n -
                    13/20)/((1/4 + n)^(1/4 + n)/(Exp[1]*n)^(2*1/4)/(n -
                    1/4)^(n - 1/4))/((1/12 + n)^(1/12 + n)/(Exp[1]*
                    n)^(2*1/12)/(n - 1/12)^(n - 1/12))/((11/20 + n)^(11/20 +
                    n)/(Exp[1]*n)^(2*11/20)/(n - 11/20)^(n - 11/20))/((3/20 +
                    n)^(3/20 + n)/(Exp[1]*n)^(2*3/20)/(n - 3/20)^(n - 3/20)), {n,
                    1, Infinity}]



                    gives the closed form output



                    $$frac{{2}^{1/4} 3^{13/20} 11^{11/20} 5^{frac{1}{5} zeta left(-1,-frac{1}{4}right)-frac{1}{480}} exp left(frac{1}{5} zeta ^{(1,0)}left(-1,-frac{1}{4}right)+zeta ^{(1,0)}left(-1,frac{19}{20}right)-zeta ^{(1,0)}left(-1,-frac{1}{20}right)+frac{97 C}{60 pi }+frac{361}{480}right)}{7^{7/12} 13^{13/20} pi ^{3/4} {Glaisher}^{1/40}}$$



                    where Glaisher's constant is approximately 1.28243 and $zeta$ is the (generalized) Riemann zeta function. Evaluating the above mess to 20 decimal places gives



                    $$0.780~459~197~412~937~486~21.$$







                    share|cite|improve this answer










                    New contributor




                    erfink is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                    Check out our Code of Conduct.









                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited yesterday





















                    New contributor




                    erfink is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                    Check out our Code of Conduct.









                    answered yesterday









                    erfinkerfink

                    1315




                    1315




                    New contributor




                    erfink is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                    Check out our Code of Conduct.





                    New contributor





                    erfink is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                    Check out our Code of Conduct.






                    erfink is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                    Check out our Code of Conduct.












                    • $begingroup$
                      Woah! I had no idea that Glaisher's constant was in here! Thanks.
                      $endgroup$
                      – clathratus
                      yesterday


















                    • $begingroup$
                      Woah! I had no idea that Glaisher's constant was in here! Thanks.
                      $endgroup$
                      – clathratus
                      yesterday
















                    $begingroup$
                    Woah! I had no idea that Glaisher's constant was in here! Thanks.
                    $endgroup$
                    – clathratus
                    yesterday




                    $begingroup$
                    Woah! I had no idea that Glaisher's constant was in here! Thanks.
                    $endgroup$
                    – clathratus
                    yesterday










                    clathratus is a new contributor. Be nice, and check out our Code of Conduct.










                    draft saved

                    draft discarded


















                    clathratus is a new contributor. Be nice, and check out our Code of Conduct.













                    clathratus is a new contributor. Be nice, and check out our Code of Conduct.












                    clathratus is a new contributor. Be nice, and check out our Code of Conduct.
















                    Thanks for contributing an answer to MathOverflow!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f326156%2fclosed-form-expression-for-certain-product%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Masuk log Menu navigasi

                    Identifying “long and narrow” polygons in with PostGISlength and width of polygonWhy postgis st_overlaps reports Qgis' “avoid intersections” generated polygon as overlapping with others?Adjusting polygons to boundary and filling holesDrawing polygons with fixed area?How to remove spikes in Polygons with PostGISDeleting sliver polygons after difference operation in QGIS?Snapping boundaries in PostGISSplit polygon into parts adding attributes based on underlying polygon in QGISSplitting overlap between polygons and assign to nearest polygon using PostGIS?Expanding polygons and clipping at midpoint?Removing Intersection of Buffers in Same Layers

                    Старые Смолеговицы Содержание История | География | Демография | Достопримечательности | Примечания | НавигацияHGЯOLHGЯOL41 206 832 01641 606 406 141Административно-территориальное деление Ленинградской области«Переписная оброчная книга Водской пятины 1500 года», С. 793«Карта Ингерманландии: Ивангорода, Яма, Копорья, Нотеборга», по материалам 1676 г.«Генеральная карта провинции Ингерманландии» Э. Белинга и А. Андерсина, 1704 г., составлена по материалам 1678 г.«Географический чертёж над Ижорскою землей со своими городами» Адриана Шонбека 1705 г.Новая и достоверная всей Ингерманландии ланткарта. Грав. А. Ростовцев. СПб., 1727 г.Топографическая карта Санкт-Петербургской губернии. 5-и верстка. Шуберт. 1834 г.Описание Санкт-Петербургской губернии по уездам и станамСпецкарта западной части России Ф. Ф. Шуберта. 1844 г.Алфавитный список селений по уездам и станам С.-Петербургской губернииСписки населённых мест Российской Империи, составленные и издаваемые центральным статистическим комитетом министерства внутренних дел. XXXVII. Санкт-Петербургская губерния. По состоянию на 1862 год. СПб. 1864. С. 203Материалы по статистике народного хозяйства в С.-Петербургской губернии. Вып. IX. Частновладельческое хозяйство в Ямбургском уезде. СПб, 1888, С. 146, С. 2, 7, 54Положение о гербе муниципального образования Курское сельское поселениеСправочник истории административно-территориального деления Ленинградской области.Топографическая карта Ленинградской области, квадрат О-35-23-В (Хотыницы), 1930 г.АрхивированоАдминистративно-территориальное деление Ленинградской области. — Л., 1933, С. 27, 198АрхивированоАдминистративно-экономический справочник по Ленинградской области. — Л., 1936, с. 219АрхивированоАдминистративно-территориальное деление Ленинградской области. — Л., 1966, с. 175АрхивированоАдминистративно-территориальное деление Ленинградской области. — Лениздат, 1973, С. 180АрхивированоАдминистративно-территориальное деление Ленинградской области. — Лениздат, 1990, ISBN 5-289-00612-5, С. 38АрхивированоАдминистративно-территориальное деление Ленинградской области. — СПб., 2007, с. 60АрхивированоКоряков Юрий База данных «Этно-языковой состав населённых пунктов России». Ленинградская область.Административно-территориальное деление Ленинградской области. — СПб, 1997, ISBN 5-86153-055-6, С. 41АрхивированоКультовый комплекс Старые Смолеговицы // Электронная энциклопедия ЭрмитажаПроблемы выявления, изучения и сохранения культовых комплексов с каменными крестами: по материалам работ 2016-2017 гг. в Ленинградской области