What are the possible solutions of the given equation?When do we get extraneous roots?Algebraic manipulation with square rootsFind all real numbers such that $sqrtx-frac1x + sqrt1 - frac1x = x$Transposing an equation: x = F/k + sqrt(F/c) to get F as the subjectFinding all real roots of the equation $(x+1) sqrtx+2 + (x+6)sqrtx+7 = x^2+7x+12$Justify the algorithm used to create a polynomial whose roots are squares of the roots of the given polynomial (over $mathbb C$)Integral solutions to the equation $left(frac1nright)^-1/2=sqrta+sqrt15-sqrta-sqrt15.$What rule governs $x^4=10,000$ having complex solutions?Why do I keep getting this incorrect solution when trying to find all the real solutions for $sqrt2x-3 +x=3$.Radical equation - can I square both sides with more than 1 radical on one side?

Does the statement `int val = (++i > ++j) ? ++i : ++j;` invoke undefined behavior?

How to deal with taxi scam when on vacation?

Co-worker team leader wants to inject his friend's awful software into our development. What should I say to our common boss?

Why is "das Weib" grammatically neuter?

How to simplify this time periods definition interface?

Russian cases: A few examples, I'm really confused

Why are the outputs of printf and std::cout different

Theorems like the Lovász Local Lemma?

How to generate globally unique ids for different tables of the same database?

At what level can a dragon innately cast its spells?

Rules about breaking the rules. How do I do it well?

How Did the Space Junk Stay in Orbit in Wall-E?

Is it normal that my co-workers at a fitness company criticize my food choices?

What is IP squat space

Do I need life insurance if I can cover my own funeral costs?

Why would a flight no longer considered airworthy be redirected like this?

Is it true that real estate prices mainly go up?

I need to drive a 7/16" nut but am unsure how to use the socket I bought for my screwdriver

Be in awe of my brilliance!

Why do passenger jet manufacturers design their planes with stall prevention systems?

Meaning of "SEVERA INDEOVI VAS" from 3rd Century slab

Informing my boss about remarks from a nasty colleague

What is the greatest age difference between a married couple in Tanach?

The use of "touch" and "touch on" in context



What are the possible solutions of the given equation?


When do we get extraneous roots?Algebraic manipulation with square rootsFind all real numbers such that $sqrtx-frac1x + sqrt1 - frac1x = x$Transposing an equation: x = F/k + sqrt(F/c) to get F as the subjectFinding all real roots of the equation $(x+1) sqrtx+2 + (x+6)sqrtx+7 = x^2+7x+12$Justify the algorithm used to create a polynomial whose roots are squares of the roots of the given polynomial (over $mathbb C$)Integral solutions to the equation $left(frac1nright)^-1/2=sqrta+sqrt15-sqrta-sqrt15.$What rule governs $x^4=10,000$ having complex solutions?Why do I keep getting this incorrect solution when trying to find all the real solutions for $sqrt2x-3 +x=3$.Radical equation - can I square both sides with more than 1 radical on one side?













2












$begingroup$


I encountered a question in an exam in which we had:




Find all possible solutions of the equation $$x+y+ 1over x+1over y+4=2 (sqrt 2x+1+sqrt 2y+1) $$ where $x $ and $y$ are real numbers.




I tried squaring both sides to eliminate the square roots but the number of terms became too many, making the problem very difficult to handle. I am not really able to understand how to find an easier approach or handle the terms efficiently. Would someone please help me to solve this question?










share|cite|improve this question











$endgroup$
















    2












    $begingroup$


    I encountered a question in an exam in which we had:




    Find all possible solutions of the equation $$x+y+ 1over x+1over y+4=2 (sqrt 2x+1+sqrt 2y+1) $$ where $x $ and $y$ are real numbers.




    I tried squaring both sides to eliminate the square roots but the number of terms became too many, making the problem very difficult to handle. I am not really able to understand how to find an easier approach or handle the terms efficiently. Would someone please help me to solve this question?










    share|cite|improve this question











    $endgroup$














      2












      2








      2





      $begingroup$


      I encountered a question in an exam in which we had:




      Find all possible solutions of the equation $$x+y+ 1over x+1over y+4=2 (sqrt 2x+1+sqrt 2y+1) $$ where $x $ and $y$ are real numbers.




      I tried squaring both sides to eliminate the square roots but the number of terms became too many, making the problem very difficult to handle. I am not really able to understand how to find an easier approach or handle the terms efficiently. Would someone please help me to solve this question?










      share|cite|improve this question











      $endgroup$




      I encountered a question in an exam in which we had:




      Find all possible solutions of the equation $$x+y+ 1over x+1over y+4=2 (sqrt 2x+1+sqrt 2y+1) $$ where $x $ and $y$ are real numbers.




      I tried squaring both sides to eliminate the square roots but the number of terms became too many, making the problem very difficult to handle. I am not really able to understand how to find an easier approach or handle the terms efficiently. Would someone please help me to solve this question?







      algebra-precalculus






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 5 hours ago









      Thomas Andrews

      130k12147298




      130k12147298










      asked 5 hours ago









      Shashwat1337Shashwat1337

      889




      889




















          2 Answers
          2






          active

          oldest

          votes


















          8












          $begingroup$

          $$x+y+ 1over x+1over y+4 = x+y+2x+1over x+2y+1over y $$



          By Am-Gm we have $$ x+2x+1over xgeq 2sqrtx2x+1over x = 2sqrt2x+1$$ and the same for $y$, so we have



          $$x+y+ 1over x+1over y+4 geq 2sqrt2x+1+2sqrt2y+1$$



          Since we have equality is achieved when $x=2x+1over x$ (and the same for $y$) we have $x=y=1+sqrt2$






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            Truly amazing!!! [+1]
            $endgroup$
            – Dr. Mathva
            5 hours ago










          • $begingroup$
            @Maria Mazur Your solution is total wrong. What happens for $xy<0?$ If you'll see down-voting it's not mine.
            $endgroup$
            – Michael Rozenberg
            5 hours ago







          • 1




            $begingroup$
            AM-GM requires terms to be positive. So your solution doesn't account for the case when terms are negative.
            $endgroup$
            – Anurag A
            4 hours ago



















          4












          $begingroup$

          It's $$sum_cycleft(x+frac1x+2-2sqrt2x+1right)=0$$ or
          $$sum_cycfracx^2-2xsqrt2x+1+2x+1x=0$$ or
          $$sum_cycfrac(x-sqrt2x+1)^2x=0,$$
          which for $xy<0$ gives infinitely many solutions.



          But, for $xy>0$ we obtain:
          $$x=sqrt2x+1$$ and $$y=sqrt2y+1,$$ which gives
          $$x=y=1+sqrt2.$$






          share|cite|improve this answer









          $endgroup$












            Your Answer





            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3148348%2fwhat-are-the-possible-solutions-of-the-given-equation%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            8












            $begingroup$

            $$x+y+ 1over x+1over y+4 = x+y+2x+1over x+2y+1over y $$



            By Am-Gm we have $$ x+2x+1over xgeq 2sqrtx2x+1over x = 2sqrt2x+1$$ and the same for $y$, so we have



            $$x+y+ 1over x+1over y+4 geq 2sqrt2x+1+2sqrt2y+1$$



            Since we have equality is achieved when $x=2x+1over x$ (and the same for $y$) we have $x=y=1+sqrt2$






            share|cite|improve this answer











            $endgroup$












            • $begingroup$
              Truly amazing!!! [+1]
              $endgroup$
              – Dr. Mathva
              5 hours ago










            • $begingroup$
              @Maria Mazur Your solution is total wrong. What happens for $xy<0?$ If you'll see down-voting it's not mine.
              $endgroup$
              – Michael Rozenberg
              5 hours ago







            • 1




              $begingroup$
              AM-GM requires terms to be positive. So your solution doesn't account for the case when terms are negative.
              $endgroup$
              – Anurag A
              4 hours ago
















            8












            $begingroup$

            $$x+y+ 1over x+1over y+4 = x+y+2x+1over x+2y+1over y $$



            By Am-Gm we have $$ x+2x+1over xgeq 2sqrtx2x+1over x = 2sqrt2x+1$$ and the same for $y$, so we have



            $$x+y+ 1over x+1over y+4 geq 2sqrt2x+1+2sqrt2y+1$$



            Since we have equality is achieved when $x=2x+1over x$ (and the same for $y$) we have $x=y=1+sqrt2$






            share|cite|improve this answer











            $endgroup$












            • $begingroup$
              Truly amazing!!! [+1]
              $endgroup$
              – Dr. Mathva
              5 hours ago










            • $begingroup$
              @Maria Mazur Your solution is total wrong. What happens for $xy<0?$ If you'll see down-voting it's not mine.
              $endgroup$
              – Michael Rozenberg
              5 hours ago







            • 1




              $begingroup$
              AM-GM requires terms to be positive. So your solution doesn't account for the case when terms are negative.
              $endgroup$
              – Anurag A
              4 hours ago














            8












            8








            8





            $begingroup$

            $$x+y+ 1over x+1over y+4 = x+y+2x+1over x+2y+1over y $$



            By Am-Gm we have $$ x+2x+1over xgeq 2sqrtx2x+1over x = 2sqrt2x+1$$ and the same for $y$, so we have



            $$x+y+ 1over x+1over y+4 geq 2sqrt2x+1+2sqrt2y+1$$



            Since we have equality is achieved when $x=2x+1over x$ (and the same for $y$) we have $x=y=1+sqrt2$






            share|cite|improve this answer











            $endgroup$



            $$x+y+ 1over x+1over y+4 = x+y+2x+1over x+2y+1over y $$



            By Am-Gm we have $$ x+2x+1over xgeq 2sqrtx2x+1over x = 2sqrt2x+1$$ and the same for $y$, so we have



            $$x+y+ 1over x+1over y+4 geq 2sqrt2x+1+2sqrt2y+1$$



            Since we have equality is achieved when $x=2x+1over x$ (and the same for $y$) we have $x=y=1+sqrt2$







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited 5 hours ago

























            answered 5 hours ago









            Maria MazurMaria Mazur

            46.9k1260120




            46.9k1260120











            • $begingroup$
              Truly amazing!!! [+1]
              $endgroup$
              – Dr. Mathva
              5 hours ago










            • $begingroup$
              @Maria Mazur Your solution is total wrong. What happens for $xy<0?$ If you'll see down-voting it's not mine.
              $endgroup$
              – Michael Rozenberg
              5 hours ago







            • 1




              $begingroup$
              AM-GM requires terms to be positive. So your solution doesn't account for the case when terms are negative.
              $endgroup$
              – Anurag A
              4 hours ago

















            • $begingroup$
              Truly amazing!!! [+1]
              $endgroup$
              – Dr. Mathva
              5 hours ago










            • $begingroup$
              @Maria Mazur Your solution is total wrong. What happens for $xy<0?$ If you'll see down-voting it's not mine.
              $endgroup$
              – Michael Rozenberg
              5 hours ago







            • 1




              $begingroup$
              AM-GM requires terms to be positive. So your solution doesn't account for the case when terms are negative.
              $endgroup$
              – Anurag A
              4 hours ago
















            $begingroup$
            Truly amazing!!! [+1]
            $endgroup$
            – Dr. Mathva
            5 hours ago




            $begingroup$
            Truly amazing!!! [+1]
            $endgroup$
            – Dr. Mathva
            5 hours ago












            $begingroup$
            @Maria Mazur Your solution is total wrong. What happens for $xy<0?$ If you'll see down-voting it's not mine.
            $endgroup$
            – Michael Rozenberg
            5 hours ago





            $begingroup$
            @Maria Mazur Your solution is total wrong. What happens for $xy<0?$ If you'll see down-voting it's not mine.
            $endgroup$
            – Michael Rozenberg
            5 hours ago





            1




            1




            $begingroup$
            AM-GM requires terms to be positive. So your solution doesn't account for the case when terms are negative.
            $endgroup$
            – Anurag A
            4 hours ago





            $begingroup$
            AM-GM requires terms to be positive. So your solution doesn't account for the case when terms are negative.
            $endgroup$
            – Anurag A
            4 hours ago












            4












            $begingroup$

            It's $$sum_cycleft(x+frac1x+2-2sqrt2x+1right)=0$$ or
            $$sum_cycfracx^2-2xsqrt2x+1+2x+1x=0$$ or
            $$sum_cycfrac(x-sqrt2x+1)^2x=0,$$
            which for $xy<0$ gives infinitely many solutions.



            But, for $xy>0$ we obtain:
            $$x=sqrt2x+1$$ and $$y=sqrt2y+1,$$ which gives
            $$x=y=1+sqrt2.$$






            share|cite|improve this answer









            $endgroup$

















              4












              $begingroup$

              It's $$sum_cycleft(x+frac1x+2-2sqrt2x+1right)=0$$ or
              $$sum_cycfracx^2-2xsqrt2x+1+2x+1x=0$$ or
              $$sum_cycfrac(x-sqrt2x+1)^2x=0,$$
              which for $xy<0$ gives infinitely many solutions.



              But, for $xy>0$ we obtain:
              $$x=sqrt2x+1$$ and $$y=sqrt2y+1,$$ which gives
              $$x=y=1+sqrt2.$$






              share|cite|improve this answer









              $endgroup$















                4












                4








                4





                $begingroup$

                It's $$sum_cycleft(x+frac1x+2-2sqrt2x+1right)=0$$ or
                $$sum_cycfracx^2-2xsqrt2x+1+2x+1x=0$$ or
                $$sum_cycfrac(x-sqrt2x+1)^2x=0,$$
                which for $xy<0$ gives infinitely many solutions.



                But, for $xy>0$ we obtain:
                $$x=sqrt2x+1$$ and $$y=sqrt2y+1,$$ which gives
                $$x=y=1+sqrt2.$$






                share|cite|improve this answer









                $endgroup$



                It's $$sum_cycleft(x+frac1x+2-2sqrt2x+1right)=0$$ or
                $$sum_cycfracx^2-2xsqrt2x+1+2x+1x=0$$ or
                $$sum_cycfrac(x-sqrt2x+1)^2x=0,$$
                which for $xy<0$ gives infinitely many solutions.



                But, for $xy>0$ we obtain:
                $$x=sqrt2x+1$$ and $$y=sqrt2y+1,$$ which gives
                $$x=y=1+sqrt2.$$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 5 hours ago









                Michael RozenbergMichael Rozenberg

                108k1895200




                108k1895200



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3148348%2fwhat-are-the-possible-solutions-of-the-given-equation%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Masuk log Menu navigasi

                    Identifying “long and narrow” polygons in with PostGISlength and width of polygonWhy postgis st_overlaps reports Qgis' “avoid intersections” generated polygon as overlapping with others?Adjusting polygons to boundary and filling holesDrawing polygons with fixed area?How to remove spikes in Polygons with PostGISDeleting sliver polygons after difference operation in QGIS?Snapping boundaries in PostGISSplit polygon into parts adding attributes based on underlying polygon in QGISSplitting overlap between polygons and assign to nearest polygon using PostGIS?Expanding polygons and clipping at midpoint?Removing Intersection of Buffers in Same Layers

                    Старые Смолеговицы Содержание История | География | Демография | Достопримечательности | Примечания | НавигацияHGЯOLHGЯOL41 206 832 01641 606 406 141Административно-территориальное деление Ленинградской области«Переписная оброчная книга Водской пятины 1500 года», С. 793«Карта Ингерманландии: Ивангорода, Яма, Копорья, Нотеборга», по материалам 1676 г.«Генеральная карта провинции Ингерманландии» Э. Белинга и А. Андерсина, 1704 г., составлена по материалам 1678 г.«Географический чертёж над Ижорскою землей со своими городами» Адриана Шонбека 1705 г.Новая и достоверная всей Ингерманландии ланткарта. Грав. А. Ростовцев. СПб., 1727 г.Топографическая карта Санкт-Петербургской губернии. 5-и верстка. Шуберт. 1834 г.Описание Санкт-Петербургской губернии по уездам и станамСпецкарта западной части России Ф. Ф. Шуберта. 1844 г.Алфавитный список селений по уездам и станам С.-Петербургской губернииСписки населённых мест Российской Империи, составленные и издаваемые центральным статистическим комитетом министерства внутренних дел. XXXVII. Санкт-Петербургская губерния. По состоянию на 1862 год. СПб. 1864. С. 203Материалы по статистике народного хозяйства в С.-Петербургской губернии. Вып. IX. Частновладельческое хозяйство в Ямбургском уезде. СПб, 1888, С. 146, С. 2, 7, 54Положение о гербе муниципального образования Курское сельское поселениеСправочник истории административно-территориального деления Ленинградской области.Топографическая карта Ленинградской области, квадрат О-35-23-В (Хотыницы), 1930 г.АрхивированоАдминистративно-территориальное деление Ленинградской области. — Л., 1933, С. 27, 198АрхивированоАдминистративно-экономический справочник по Ленинградской области. — Л., 1936, с. 219АрхивированоАдминистративно-территориальное деление Ленинградской области. — Л., 1966, с. 175АрхивированоАдминистративно-территориальное деление Ленинградской области. — Лениздат, 1973, С. 180АрхивированоАдминистративно-территориальное деление Ленинградской области. — Лениздат, 1990, ISBN 5-289-00612-5, С. 38АрхивированоАдминистративно-территориальное деление Ленинградской области. — СПб., 2007, с. 60АрхивированоКоряков Юрий База данных «Этно-языковой состав населённых пунктов России». Ленинградская область.Административно-территориальное деление Ленинградской области. — СПб, 1997, ISBN 5-86153-055-6, С. 41АрхивированоКультовый комплекс Старые Смолеговицы // Электронная энциклопедия ЭрмитажаПроблемы выявления, изучения и сохранения культовых комплексов с каменными крестами: по материалам работ 2016-2017 гг. в Ленинградской области