About parabolic Kazhdan Lusztig polynomialsBGG category everywhere implies generalized Kazhdan-Lusztig formula?When are parabolic Kazhdan-Lusztig polynomials nonzero?Implications of non-negativity of coefficients of arbitrary Kazhdan-Lusztig polynomials?Kazhdan-Lusztig Polynomials and Intersection CohomologyPapers/Programs for computing periodic KL polynomials?Recursive formula for inverse Kazhdan-Lusztig polynomialsCombinatorics of $p$-Kazhdan--lusztig polynomialsParabolic Kazhdan-Lusztig polynomial coincide?Examples of non-trivial Kazhdan-Lusztig polynomialsRelationship bewteen Kazhdan-Lusztig Vogan polynomial and Kazhdan-Lusztig polynomial

About parabolic Kazhdan Lusztig polynomials


BGG category everywhere implies generalized Kazhdan-Lusztig formula?When are parabolic Kazhdan-Lusztig polynomials nonzero?Implications of non-negativity of coefficients of arbitrary Kazhdan-Lusztig polynomials?Kazhdan-Lusztig Polynomials and Intersection CohomologyPapers/Programs for computing periodic KL polynomials?Recursive formula for inverse Kazhdan-Lusztig polynomialsCombinatorics of $p$-Kazhdan--lusztig polynomialsParabolic Kazhdan-Lusztig polynomial coincide?Examples of non-trivial Kazhdan-Lusztig polynomialsRelationship bewteen Kazhdan-Lusztig Vogan polynomial and Kazhdan-Lusztig polynomial













4












$begingroup$


There are two types of parabolic Kazhdan Lusztig polynomials, namely, of type -1: $P_x,w^I,-1$ and of type $q$: $P_x,w^I,q$. See Kazhdan–Lusztig and R-Polynomials,
Young’s Lattice, and Dyck Partitions



My question: What is the meaning of $-1$ and $q$?










share|cite|improve this question











$endgroup$
















    4












    $begingroup$


    There are two types of parabolic Kazhdan Lusztig polynomials, namely, of type -1: $P_x,w^I,-1$ and of type $q$: $P_x,w^I,q$. See Kazhdan–Lusztig and R-Polynomials,
    Young’s Lattice, and Dyck Partitions



    My question: What is the meaning of $-1$ and $q$?










    share|cite|improve this question











    $endgroup$














      4












      4








      4





      $begingroup$


      There are two types of parabolic Kazhdan Lusztig polynomials, namely, of type -1: $P_x,w^I,-1$ and of type $q$: $P_x,w^I,q$. See Kazhdan–Lusztig and R-Polynomials,
      Young’s Lattice, and Dyck Partitions



      My question: What is the meaning of $-1$ and $q$?










      share|cite|improve this question











      $endgroup$




      There are two types of parabolic Kazhdan Lusztig polynomials, namely, of type -1: $P_x,w^I,-1$ and of type $q$: $P_x,w^I,q$. See Kazhdan–Lusztig and R-Polynomials,
      Young’s Lattice, and Dyck Partitions



      My question: What is the meaning of $-1$ and $q$?







      rt.representation-theory algebraic-combinatorics kazhdan-lusztig






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 6 hours ago









      Carlo Beenakker

      78.5k9185288




      78.5k9185288










      asked 9 hours ago









      James CheungJames Cheung

      42316




      42316




















          2 Answers
          2






          active

          oldest

          votes


















          6












          $begingroup$

          These polynomials are connected to the canonical basis of the induction from a parabolic subalgebra $H_I$ up to the whole Hecke algebra $H$. The difference is which module is being induced: The $q$-variant induces the trivial module (on which the generators $T_s$ of $H_I$ act as multiplication by $q$) while the $(-1)$ variant induces the sign module (on which the generators act as multiplication by $-1$).






          share|cite|improve this answer









          $endgroup$




















            3












            $begingroup$

            these are polynomials in $q$ of two types, which satisfy either of the two recursions:
            $$P_v,w^I,q=-P_v,ws^I,q;;textor;;P_v,w^I,-1=qP_v,ws^I,-1,$$
            see for example these lecture notes.






            share|cite|improve this answer









            $endgroup$












              Your Answer





              StackExchange.ifUsing("editor", function ()
              return StackExchange.using("mathjaxEditing", function ()
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              );
              );
              , "mathjax-editing");

              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "504"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );













              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f325436%2fabout-parabolic-kazhdan-lusztig-polynomials%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              6












              $begingroup$

              These polynomials are connected to the canonical basis of the induction from a parabolic subalgebra $H_I$ up to the whole Hecke algebra $H$. The difference is which module is being induced: The $q$-variant induces the trivial module (on which the generators $T_s$ of $H_I$ act as multiplication by $q$) while the $(-1)$ variant induces the sign module (on which the generators act as multiplication by $-1$).






              share|cite|improve this answer









              $endgroup$

















                6












                $begingroup$

                These polynomials are connected to the canonical basis of the induction from a parabolic subalgebra $H_I$ up to the whole Hecke algebra $H$. The difference is which module is being induced: The $q$-variant induces the trivial module (on which the generators $T_s$ of $H_I$ act as multiplication by $q$) while the $(-1)$ variant induces the sign module (on which the generators act as multiplication by $-1$).






                share|cite|improve this answer









                $endgroup$















                  6












                  6








                  6





                  $begingroup$

                  These polynomials are connected to the canonical basis of the induction from a parabolic subalgebra $H_I$ up to the whole Hecke algebra $H$. The difference is which module is being induced: The $q$-variant induces the trivial module (on which the generators $T_s$ of $H_I$ act as multiplication by $q$) while the $(-1)$ variant induces the sign module (on which the generators act as multiplication by $-1$).






                  share|cite|improve this answer









                  $endgroup$



                  These polynomials are connected to the canonical basis of the induction from a parabolic subalgebra $H_I$ up to the whole Hecke algebra $H$. The difference is which module is being induced: The $q$-variant induces the trivial module (on which the generators $T_s$ of $H_I$ act as multiplication by $q$) while the $(-1)$ variant induces the sign module (on which the generators act as multiplication by $-1$).







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 5 hours ago









                  Johannes HahnJohannes Hahn

                  6,06722445




                  6,06722445





















                      3












                      $begingroup$

                      these are polynomials in $q$ of two types, which satisfy either of the two recursions:
                      $$P_v,w^I,q=-P_v,ws^I,q;;textor;;P_v,w^I,-1=qP_v,ws^I,-1,$$
                      see for example these lecture notes.






                      share|cite|improve this answer









                      $endgroup$

















                        3












                        $begingroup$

                        these are polynomials in $q$ of two types, which satisfy either of the two recursions:
                        $$P_v,w^I,q=-P_v,ws^I,q;;textor;;P_v,w^I,-1=qP_v,ws^I,-1,$$
                        see for example these lecture notes.






                        share|cite|improve this answer









                        $endgroup$















                          3












                          3








                          3





                          $begingroup$

                          these are polynomials in $q$ of two types, which satisfy either of the two recursions:
                          $$P_v,w^I,q=-P_v,ws^I,q;;textor;;P_v,w^I,-1=qP_v,ws^I,-1,$$
                          see for example these lecture notes.






                          share|cite|improve this answer









                          $endgroup$



                          these are polynomials in $q$ of two types, which satisfy either of the two recursions:
                          $$P_v,w^I,q=-P_v,ws^I,q;;textor;;P_v,w^I,-1=qP_v,ws^I,-1,$$
                          see for example these lecture notes.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered 6 hours ago









                          Carlo BeenakkerCarlo Beenakker

                          78.5k9185288




                          78.5k9185288



























                              draft saved

                              draft discarded
















































                              Thanks for contributing an answer to MathOverflow!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f325436%2fabout-parabolic-kazhdan-lusztig-polynomials%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Masuk log Menu navigasi

                              Identifying “long and narrow” polygons in with PostGISlength and width of polygonWhy postgis st_overlaps reports Qgis' “avoid intersections” generated polygon as overlapping with others?Adjusting polygons to boundary and filling holesDrawing polygons with fixed area?How to remove spikes in Polygons with PostGISDeleting sliver polygons after difference operation in QGIS?Snapping boundaries in PostGISSplit polygon into parts adding attributes based on underlying polygon in QGISSplitting overlap between polygons and assign to nearest polygon using PostGIS?Expanding polygons and clipping at midpoint?Removing Intersection of Buffers in Same Layers

                              Старые Смолеговицы Содержание История | География | Демография | Достопримечательности | Примечания | НавигацияHGЯOLHGЯOL41 206 832 01641 606 406 141Административно-территориальное деление Ленинградской области«Переписная оброчная книга Водской пятины 1500 года», С. 793«Карта Ингерманландии: Ивангорода, Яма, Копорья, Нотеборга», по материалам 1676 г.«Генеральная карта провинции Ингерманландии» Э. Белинга и А. Андерсина, 1704 г., составлена по материалам 1678 г.«Географический чертёж над Ижорскою землей со своими городами» Адриана Шонбека 1705 г.Новая и достоверная всей Ингерманландии ланткарта. Грав. А. Ростовцев. СПб., 1727 г.Топографическая карта Санкт-Петербургской губернии. 5-и верстка. Шуберт. 1834 г.Описание Санкт-Петербургской губернии по уездам и станамСпецкарта западной части России Ф. Ф. Шуберта. 1844 г.Алфавитный список селений по уездам и станам С.-Петербургской губернииСписки населённых мест Российской Империи, составленные и издаваемые центральным статистическим комитетом министерства внутренних дел. XXXVII. Санкт-Петербургская губерния. По состоянию на 1862 год. СПб. 1864. С. 203Материалы по статистике народного хозяйства в С.-Петербургской губернии. Вып. IX. Частновладельческое хозяйство в Ямбургском уезде. СПб, 1888, С. 146, С. 2, 7, 54Положение о гербе муниципального образования Курское сельское поселениеСправочник истории административно-территориального деления Ленинградской области.Топографическая карта Ленинградской области, квадрат О-35-23-В (Хотыницы), 1930 г.АрхивированоАдминистративно-территориальное деление Ленинградской области. — Л., 1933, С. 27, 198АрхивированоАдминистративно-экономический справочник по Ленинградской области. — Л., 1936, с. 219АрхивированоАдминистративно-территориальное деление Ленинградской области. — Л., 1966, с. 175АрхивированоАдминистративно-территориальное деление Ленинградской области. — Лениздат, 1973, С. 180АрхивированоАдминистративно-территориальное деление Ленинградской области. — Лениздат, 1990, ISBN 5-289-00612-5, С. 38АрхивированоАдминистративно-территориальное деление Ленинградской области. — СПб., 2007, с. 60АрхивированоКоряков Юрий База данных «Этно-языковой состав населённых пунктов России». Ленинградская область.Административно-территориальное деление Ленинградской области. — СПб, 1997, ISBN 5-86153-055-6, С. 41АрхивированоКультовый комплекс Старые Смолеговицы // Электронная энциклопедия ЭрмитажаПроблемы выявления, изучения и сохранения культовых комплексов с каменными крестами: по материалам работ 2016-2017 гг. в Ленинградской области