What is the minimum High Card Points needed for a partnership to be able to claim all 13 tricks in Bridge?












4












$begingroup$


Assume you have basic knowledge of how a contract bridge game plays. There are 40 total HCPs in a set of cards. 4 for each Ace, 3 for each King, 2 for each Queen and 1 for each Jack.



What is the minimal HCP required for a partnership (you and your partner, e.g., N and S) to be able to




  1. Possibly claim all 13 tricks for an NT game (7NT +0)?

  2. Possibly claim all 13 tricks for a game with a given trump suit (e.g. 7♠ +0)?

  3. Secure a 7NT contract? (Guarantee a +0 result on NT Grand Slam)

  4. Secure a level 7 contract with a given trump suit (e.g. 7♠)?


To clarify, the first two cases assume you have stupid opponents - they play the best card for you, while the last two cases assume you have elite opponents - they play the best card against you (think it as double dummy). That's why the wording is different: "to possibly claim" vs. "to secure".



In all 4 cases, you're the declarer. The leading trick starts with the player on your left, and your partner is the dummy.



Note: You do not assume how cards are distributed - you control how cards are distributed, across all 4 players.










share|improve this question











$endgroup$












  • $begingroup$
    Are we also to suppose an optimal opponents' card distribution for 1 and 2, and the worst possible one for 3 and 4? That's how I would interpret the "possibly claim" and "secure"; without knowing which opponent has which card, you won't have secured anything unless you can beat even the worst possible case.
    $endgroup$
    – Bass
    Apr 4 at 15:50












  • $begingroup$
    @Bass No. You distribute the card as you like, and in 1 and 2, opponents play as you like. Arranging the cards is exactly what this puzzle is about.
    $endgroup$
    – iBuͦͦͦg
    Apr 4 at 16:36
















4












$begingroup$


Assume you have basic knowledge of how a contract bridge game plays. There are 40 total HCPs in a set of cards. 4 for each Ace, 3 for each King, 2 for each Queen and 1 for each Jack.



What is the minimal HCP required for a partnership (you and your partner, e.g., N and S) to be able to




  1. Possibly claim all 13 tricks for an NT game (7NT +0)?

  2. Possibly claim all 13 tricks for a game with a given trump suit (e.g. 7♠ +0)?

  3. Secure a 7NT contract? (Guarantee a +0 result on NT Grand Slam)

  4. Secure a level 7 contract with a given trump suit (e.g. 7♠)?


To clarify, the first two cases assume you have stupid opponents - they play the best card for you, while the last two cases assume you have elite opponents - they play the best card against you (think it as double dummy). That's why the wording is different: "to possibly claim" vs. "to secure".



In all 4 cases, you're the declarer. The leading trick starts with the player on your left, and your partner is the dummy.



Note: You do not assume how cards are distributed - you control how cards are distributed, across all 4 players.










share|improve this question











$endgroup$












  • $begingroup$
    Are we also to suppose an optimal opponents' card distribution for 1 and 2, and the worst possible one for 3 and 4? That's how I would interpret the "possibly claim" and "secure"; without knowing which opponent has which card, you won't have secured anything unless you can beat even the worst possible case.
    $endgroup$
    – Bass
    Apr 4 at 15:50












  • $begingroup$
    @Bass No. You distribute the card as you like, and in 1 and 2, opponents play as you like. Arranging the cards is exactly what this puzzle is about.
    $endgroup$
    – iBuͦͦͦg
    Apr 4 at 16:36














4












4








4





$begingroup$


Assume you have basic knowledge of how a contract bridge game plays. There are 40 total HCPs in a set of cards. 4 for each Ace, 3 for each King, 2 for each Queen and 1 for each Jack.



What is the minimal HCP required for a partnership (you and your partner, e.g., N and S) to be able to




  1. Possibly claim all 13 tricks for an NT game (7NT +0)?

  2. Possibly claim all 13 tricks for a game with a given trump suit (e.g. 7♠ +0)?

  3. Secure a 7NT contract? (Guarantee a +0 result on NT Grand Slam)

  4. Secure a level 7 contract with a given trump suit (e.g. 7♠)?


To clarify, the first two cases assume you have stupid opponents - they play the best card for you, while the last two cases assume you have elite opponents - they play the best card against you (think it as double dummy). That's why the wording is different: "to possibly claim" vs. "to secure".



In all 4 cases, you're the declarer. The leading trick starts with the player on your left, and your partner is the dummy.



Note: You do not assume how cards are distributed - you control how cards are distributed, across all 4 players.










share|improve this question











$endgroup$




Assume you have basic knowledge of how a contract bridge game plays. There are 40 total HCPs in a set of cards. 4 for each Ace, 3 for each King, 2 for each Queen and 1 for each Jack.



What is the minimal HCP required for a partnership (you and your partner, e.g., N and S) to be able to




  1. Possibly claim all 13 tricks for an NT game (7NT +0)?

  2. Possibly claim all 13 tricks for a game with a given trump suit (e.g. 7♠ +0)?

  3. Secure a 7NT contract? (Guarantee a +0 result on NT Grand Slam)

  4. Secure a level 7 contract with a given trump suit (e.g. 7♠)?


To clarify, the first two cases assume you have stupid opponents - they play the best card for you, while the last two cases assume you have elite opponents - they play the best card against you (think it as double dummy). That's why the wording is different: "to possibly claim" vs. "to secure".



In all 4 cases, you're the declarer. The leading trick starts with the player on your left, and your partner is the dummy.



Note: You do not assume how cards are distributed - you control how cards are distributed, across all 4 players.







logical-deduction cards bridge






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Apr 4 at 23:25









Gilles

3,42731837




3,42731837










asked Apr 4 at 12:55









iBuͦͦͦgiBuͦͦͦg

730220




730220












  • $begingroup$
    Are we also to suppose an optimal opponents' card distribution for 1 and 2, and the worst possible one for 3 and 4? That's how I would interpret the "possibly claim" and "secure"; without knowing which opponent has which card, you won't have secured anything unless you can beat even the worst possible case.
    $endgroup$
    – Bass
    Apr 4 at 15:50












  • $begingroup$
    @Bass No. You distribute the card as you like, and in 1 and 2, opponents play as you like. Arranging the cards is exactly what this puzzle is about.
    $endgroup$
    – iBuͦͦͦg
    Apr 4 at 16:36


















  • $begingroup$
    Are we also to suppose an optimal opponents' card distribution for 1 and 2, and the worst possible one for 3 and 4? That's how I would interpret the "possibly claim" and "secure"; without knowing which opponent has which card, you won't have secured anything unless you can beat even the worst possible case.
    $endgroup$
    – Bass
    Apr 4 at 15:50












  • $begingroup$
    @Bass No. You distribute the card as you like, and in 1 and 2, opponents play as you like. Arranging the cards is exactly what this puzzle is about.
    $endgroup$
    – iBuͦͦͦg
    Apr 4 at 16:36
















$begingroup$
Are we also to suppose an optimal opponents' card distribution for 1 and 2, and the worst possible one for 3 and 4? That's how I would interpret the "possibly claim" and "secure"; without knowing which opponent has which card, you won't have secured anything unless you can beat even the worst possible case.
$endgroup$
– Bass
Apr 4 at 15:50






$begingroup$
Are we also to suppose an optimal opponents' card distribution for 1 and 2, and the worst possible one for 3 and 4? That's how I would interpret the "possibly claim" and "secure"; without knowing which opponent has which card, you won't have secured anything unless you can beat even the worst possible case.
$endgroup$
– Bass
Apr 4 at 15:50














$begingroup$
@Bass No. You distribute the card as you like, and in 1 and 2, opponents play as you like. Arranging the cards is exactly what this puzzle is about.
$endgroup$
– iBuͦͦͦg
Apr 4 at 16:36




$begingroup$
@Bass No. You distribute the card as you like, and in 1 and 2, opponents play as you like. Arranging the cards is exactly what this puzzle is about.
$endgroup$
– iBuͦͦͦg
Apr 4 at 16:36










4 Answers
4






active

oldest

votes


















5












$begingroup$


  1. (Assisted 7NT): Given optimal card distribution, just have the opponents discard the high cards:



0 HCP is enough. Example: We have ♠9876 ♦T98765432, the starting opponent has the rest of the spades, four of which get played first, while the other opponent dumps the ♦AKQJ.





  1. (Assisted 7♠): The ♠A can eat ♠K and ♠Q at most, so we must also have the ♠J, for a total or



5 HCP.





  1. (Guaranteed 7NT): First answer, which assumed that I cannot arrange the opponents' cards.



My best is 19 HCP: We have ♠AQJT98765 and the rest of the aces, dummy has ♠432, guaranteeing that the ♠K falls to the ace. Since we should suppose the worst case, trying to finesse seems to always result in the wrong opponent having the card we are trying to cut, so it seemed difficult to improve this any further.





  1. (Guaranteed 7NT): Edited in after OP clarified that I get to arrange the opponents' cards too, and that I know which cards they have while playing:



11 HCP seems to be enough: we get ♠AQJT98765432 ♦A, and the starting opponent has ♠K and the rest of the diamonds.





  1. (Guaranteed 7♠): Giving up high trump cards would require having even bigger cards in other suits, so the best seems to be



10 HCP, have all the trumps.




And if you are really clever, you can figure out a way to do the same with only half of those HCPs. Wow.






share|improve this answer











$endgroup$













  • $begingroup$
    You know how the cards are distributed so finesses can win whenever possible (e.g. left has KJ and dummy has AQ, you can finesse the left opponent with 100% confidence).
    $endgroup$
    – iBuͦͦͦg
    Apr 4 at 16:42






  • 1




    $begingroup$
    For 3, you don't need QS because you can make both K and Q fall down with one Ace (from two sides), if K and Q are the only spades that L and R have.
    $endgroup$
    – iBuͦͦͦg
    Apr 4 at 16:44










  • $begingroup$
    Ok, if I can arrange the opponents' cards too, the I can go a lot lower for 3, hang on a minute..
    $endgroup$
    – Bass
    Apr 4 at 16:51










  • $begingroup$
    Forcible 7S can be done with 5HCP. See my answer for more details.
    $endgroup$
    – supercat
    Apr 4 at 22:18



















7












$begingroup$

7S can be forcibly won with five HCP:



.                   ♠8765432/-/♦765432/-
♠K/♥AK/♦AKQJ/♣AKQJT9 ♠Q/♥QJ/♦T98/♣8765432
. ♠AJT9/♥T98765432/-/-


If West leads a spade, South takes the ace. If West leads a heart, North ruffs and leads a spade to the ace. Otherwise South ruffs low and leads the ace of spades.



South can then ruff two hearts (or three, if desired), using spades or diamond ruffs to return to hand, and run the hearts until North has nothing but spades.



A slightly more detailed explanation, for those not familiar with bridge:



On the first trick, if West leads a spade (the king), North will have to play a spade 2-8 (all equivalent), East will be required to play the queen, and South can play the ace and take the trick. Neither East nor West will have any spades left.



If West leads anything else, it will be in a suit that either North or South doesn't have. A player without any card in a suit that's led may then play any card that is in their hand, including a spade (if one is possessed). The highest spade played on a trick, if any, will take the trick. Thus, either North or South will be able to play a spade on the first trick and then lead a spade, forcing East and West to play the king and queen while South takes the ace, again leaving East and West without any spades.



If South plays a suit that North doesn't have but the opponents do (hearts), North will be able to play a spade which will prevail over any heart that East or West plays. The first time South takes control, it will be after spades have been led once, and South will have played at most of his spades prior to that, so South will have at least two high spades left. Thus, the first two times North trumps a heart, North will be able to lead a spade that South can capture to regain the lead.



The first two times hearts are led, the opponents will each have to play one. After that, nobody except South will have any hearts; if South leads hearts and North discards diamonds until there are none left, the hearts will take tricks. At that point, North will have nothing but trump cards, so on every remaining trick, no matter what North and South do, either North will lead a trump which is captured by a higher trump in South's hand, South will lead a heart which gets captured by a trump in North's hand, or North will lead a spade upon which South discards a heart.






share|improve this answer











$endgroup$













  • $begingroup$
    Nice! Since this isn't a Bridge forum, most of the people here will probably have a hard time reading this particular notation. (Also, I kind of get how S can "ruff" hearts although his hand is full of hearts, but as a non-native speaker, it took a little time to puzzle that one out.)
    $endgroup$
    – Bass
    Apr 4 at 22:38










  • $begingroup$
    Wow! Real genius!
    $endgroup$
    – iBuͦͦͦg
    Apr 5 at 0:18










  • $begingroup$
    @Bass: Is that clearer.
    $endgroup$
    – supercat
    2 days ago










  • $begingroup$
    Great! I added some suit symbols to make it even easier to read.
    $endgroup$
    – Bass
    yesterday



















3












$begingroup$

I think for 1, the answer can be as low as




0




A possible distribution of cards, and a draft of play:




me - opp on left - dummy - opp on right

10$heartsuit$ - 6$heartsuit$ - 2$heartsuit$ - A$diamondsuit$

9$heartsuit$ - 5$heartsuit$ - 6$diamondsuit$ - K$diamondsuit$

8$heartsuit$ - 4$heartsuit$ - 5$diamondsuit$ - Q$diamondsuit$

7$heartsuit$ - 3$heartsuit$ - 4$diamondsuit$ - J$diamondsuit$

10$diamondsuit$ - A$heartsuit$ - 2$diamondsuit$ - A$clubsuit$

9$diamondsuit$ - K$heartsuit$ - 3$diamondsuit$ - K$clubsuit$

8$diamondsuit$ - Q$heartsuit$ - 8$spadesuit$ - Q$clubsuit$

7$diamondsuit$ - J$heartsuit$ - 7$spadesuit$ - J$clubsuit$

10$clubsuit$ - 6$clubsuit$ - 2$clubsuit$ - A$spadesuit$

9$clubsuit$ - 5$clubsuit$ - 5$spadesuit$ - K$spadesuit$

8$clubsuit$ - 4$clubsuit$ - 4$spadesuit$ - Q$spadesuit$

7$clubsuit$ - 3$clubsuit$ - 3$spadesuit$ - J$spadesuit$

10$spadesuit$ - 6$spadesuit$ - 2$spadesuit$ - 9$spadesuit$




The key idea is:




Let one of the opponents (in this case, the on on your right) be void in one suit (hearts in our case), so he can start discarding high cards already in the first trick. Once He gets rid all the HCP-worth cards in one suit, a change of suits (both on his, and our side) can take place. Meanwhile the other opp has to be long in the last suit, so he can foolishly hold back the highest cards of that suit to the point, where we get void in that suit.







share|improve this answer









$endgroup$





















    2












    $begingroup$

    Assuming you use the 4-3-2-1 scoring for A/K/Q/J with no points for other cards and no adjustments for suits:



    You can win a 7S having AJ1098765432S 109D, and your partner having 0 pt hand with the seven lowest diamonds, and your opponents splitting the four high diamonds at two card a piece, and the two remaining spades at one a piece. First trick, you take the KQ S with your AS. Second and third tricks you take AKQJ D with any two of your S. You are then guaranteed the next 10 tricks by virtue of having all the trump cards and highest remaining of a suit. Total of 5 points.



    You can win 7NT with an identical hand, and identical pattern of play.



    I'm not an experienced enough bridge player to figure out how to guarantee a seven trick hand with the lowest HCP total. It obviously can be done for 7S with all thirteen spades (10 points).



    What I originally thought was possible for guaranteeing 7NT was impossible, but it is definitely doable with your partner having all four aces, and you have the 2 of all four suits and KQJ1098765 of any one suit, for a total of 22 points






    share|improve this answer










    New contributor




    Moko19 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.






    $endgroup$













    • $begingroup$
      You gave the right answer for 7S (7 with trump), but as answered by elias, 7NT is doable without a single HCP.
      $endgroup$
      – iBuͦͦͦg
      Apr 4 at 16:39












    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "559"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fpuzzling.stackexchange.com%2fquestions%2f81392%2fwhat-is-the-minimum-high-card-points-needed-for-a-partnership-to-be-able-to-clai%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    4 Answers
    4






    active

    oldest

    votes








    4 Answers
    4






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    5












    $begingroup$


    1. (Assisted 7NT): Given optimal card distribution, just have the opponents discard the high cards:



    0 HCP is enough. Example: We have ♠9876 ♦T98765432, the starting opponent has the rest of the spades, four of which get played first, while the other opponent dumps the ♦AKQJ.





    1. (Assisted 7♠): The ♠A can eat ♠K and ♠Q at most, so we must also have the ♠J, for a total or



    5 HCP.





    1. (Guaranteed 7NT): First answer, which assumed that I cannot arrange the opponents' cards.



    My best is 19 HCP: We have ♠AQJT98765 and the rest of the aces, dummy has ♠432, guaranteeing that the ♠K falls to the ace. Since we should suppose the worst case, trying to finesse seems to always result in the wrong opponent having the card we are trying to cut, so it seemed difficult to improve this any further.





    1. (Guaranteed 7NT): Edited in after OP clarified that I get to arrange the opponents' cards too, and that I know which cards they have while playing:



    11 HCP seems to be enough: we get ♠AQJT98765432 ♦A, and the starting opponent has ♠K and the rest of the diamonds.





    1. (Guaranteed 7♠): Giving up high trump cards would require having even bigger cards in other suits, so the best seems to be



    10 HCP, have all the trumps.




    And if you are really clever, you can figure out a way to do the same with only half of those HCPs. Wow.






    share|improve this answer











    $endgroup$













    • $begingroup$
      You know how the cards are distributed so finesses can win whenever possible (e.g. left has KJ and dummy has AQ, you can finesse the left opponent with 100% confidence).
      $endgroup$
      – iBuͦͦͦg
      Apr 4 at 16:42






    • 1




      $begingroup$
      For 3, you don't need QS because you can make both K and Q fall down with one Ace (from two sides), if K and Q are the only spades that L and R have.
      $endgroup$
      – iBuͦͦͦg
      Apr 4 at 16:44










    • $begingroup$
      Ok, if I can arrange the opponents' cards too, the I can go a lot lower for 3, hang on a minute..
      $endgroup$
      – Bass
      Apr 4 at 16:51










    • $begingroup$
      Forcible 7S can be done with 5HCP. See my answer for more details.
      $endgroup$
      – supercat
      Apr 4 at 22:18
















    5












    $begingroup$


    1. (Assisted 7NT): Given optimal card distribution, just have the opponents discard the high cards:



    0 HCP is enough. Example: We have ♠9876 ♦T98765432, the starting opponent has the rest of the spades, four of which get played first, while the other opponent dumps the ♦AKQJ.





    1. (Assisted 7♠): The ♠A can eat ♠K and ♠Q at most, so we must also have the ♠J, for a total or



    5 HCP.





    1. (Guaranteed 7NT): First answer, which assumed that I cannot arrange the opponents' cards.



    My best is 19 HCP: We have ♠AQJT98765 and the rest of the aces, dummy has ♠432, guaranteeing that the ♠K falls to the ace. Since we should suppose the worst case, trying to finesse seems to always result in the wrong opponent having the card we are trying to cut, so it seemed difficult to improve this any further.





    1. (Guaranteed 7NT): Edited in after OP clarified that I get to arrange the opponents' cards too, and that I know which cards they have while playing:



    11 HCP seems to be enough: we get ♠AQJT98765432 ♦A, and the starting opponent has ♠K and the rest of the diamonds.





    1. (Guaranteed 7♠): Giving up high trump cards would require having even bigger cards in other suits, so the best seems to be



    10 HCP, have all the trumps.




    And if you are really clever, you can figure out a way to do the same with only half of those HCPs. Wow.






    share|improve this answer











    $endgroup$













    • $begingroup$
      You know how the cards are distributed so finesses can win whenever possible (e.g. left has KJ and dummy has AQ, you can finesse the left opponent with 100% confidence).
      $endgroup$
      – iBuͦͦͦg
      Apr 4 at 16:42






    • 1




      $begingroup$
      For 3, you don't need QS because you can make both K and Q fall down with one Ace (from two sides), if K and Q are the only spades that L and R have.
      $endgroup$
      – iBuͦͦͦg
      Apr 4 at 16:44










    • $begingroup$
      Ok, if I can arrange the opponents' cards too, the I can go a lot lower for 3, hang on a minute..
      $endgroup$
      – Bass
      Apr 4 at 16:51










    • $begingroup$
      Forcible 7S can be done with 5HCP. See my answer for more details.
      $endgroup$
      – supercat
      Apr 4 at 22:18














    5












    5








    5





    $begingroup$


    1. (Assisted 7NT): Given optimal card distribution, just have the opponents discard the high cards:



    0 HCP is enough. Example: We have ♠9876 ♦T98765432, the starting opponent has the rest of the spades, four of which get played first, while the other opponent dumps the ♦AKQJ.





    1. (Assisted 7♠): The ♠A can eat ♠K and ♠Q at most, so we must also have the ♠J, for a total or



    5 HCP.





    1. (Guaranteed 7NT): First answer, which assumed that I cannot arrange the opponents' cards.



    My best is 19 HCP: We have ♠AQJT98765 and the rest of the aces, dummy has ♠432, guaranteeing that the ♠K falls to the ace. Since we should suppose the worst case, trying to finesse seems to always result in the wrong opponent having the card we are trying to cut, so it seemed difficult to improve this any further.





    1. (Guaranteed 7NT): Edited in after OP clarified that I get to arrange the opponents' cards too, and that I know which cards they have while playing:



    11 HCP seems to be enough: we get ♠AQJT98765432 ♦A, and the starting opponent has ♠K and the rest of the diamonds.





    1. (Guaranteed 7♠): Giving up high trump cards would require having even bigger cards in other suits, so the best seems to be



    10 HCP, have all the trumps.




    And if you are really clever, you can figure out a way to do the same with only half of those HCPs. Wow.






    share|improve this answer











    $endgroup$




    1. (Assisted 7NT): Given optimal card distribution, just have the opponents discard the high cards:



    0 HCP is enough. Example: We have ♠9876 ♦T98765432, the starting opponent has the rest of the spades, four of which get played first, while the other opponent dumps the ♦AKQJ.





    1. (Assisted 7♠): The ♠A can eat ♠K and ♠Q at most, so we must also have the ♠J, for a total or



    5 HCP.





    1. (Guaranteed 7NT): First answer, which assumed that I cannot arrange the opponents' cards.



    My best is 19 HCP: We have ♠AQJT98765 and the rest of the aces, dummy has ♠432, guaranteeing that the ♠K falls to the ace. Since we should suppose the worst case, trying to finesse seems to always result in the wrong opponent having the card we are trying to cut, so it seemed difficult to improve this any further.





    1. (Guaranteed 7NT): Edited in after OP clarified that I get to arrange the opponents' cards too, and that I know which cards they have while playing:



    11 HCP seems to be enough: we get ♠AQJT98765432 ♦A, and the starting opponent has ♠K and the rest of the diamonds.





    1. (Guaranteed 7♠): Giving up high trump cards would require having even bigger cards in other suits, so the best seems to be



    10 HCP, have all the trumps.




    And if you are really clever, you can figure out a way to do the same with only half of those HCPs. Wow.







    share|improve this answer














    share|improve this answer



    share|improve this answer








    edited 2 days ago

























    answered Apr 4 at 16:36









    BassBass

    30.9k472188




    30.9k472188












    • $begingroup$
      You know how the cards are distributed so finesses can win whenever possible (e.g. left has KJ and dummy has AQ, you can finesse the left opponent with 100% confidence).
      $endgroup$
      – iBuͦͦͦg
      Apr 4 at 16:42






    • 1




      $begingroup$
      For 3, you don't need QS because you can make both K and Q fall down with one Ace (from two sides), if K and Q are the only spades that L and R have.
      $endgroup$
      – iBuͦͦͦg
      Apr 4 at 16:44










    • $begingroup$
      Ok, if I can arrange the opponents' cards too, the I can go a lot lower for 3, hang on a minute..
      $endgroup$
      – Bass
      Apr 4 at 16:51










    • $begingroup$
      Forcible 7S can be done with 5HCP. See my answer for more details.
      $endgroup$
      – supercat
      Apr 4 at 22:18


















    • $begingroup$
      You know how the cards are distributed so finesses can win whenever possible (e.g. left has KJ and dummy has AQ, you can finesse the left opponent with 100% confidence).
      $endgroup$
      – iBuͦͦͦg
      Apr 4 at 16:42






    • 1




      $begingroup$
      For 3, you don't need QS because you can make both K and Q fall down with one Ace (from two sides), if K and Q are the only spades that L and R have.
      $endgroup$
      – iBuͦͦͦg
      Apr 4 at 16:44










    • $begingroup$
      Ok, if I can arrange the opponents' cards too, the I can go a lot lower for 3, hang on a minute..
      $endgroup$
      – Bass
      Apr 4 at 16:51










    • $begingroup$
      Forcible 7S can be done with 5HCP. See my answer for more details.
      $endgroup$
      – supercat
      Apr 4 at 22:18
















    $begingroup$
    You know how the cards are distributed so finesses can win whenever possible (e.g. left has KJ and dummy has AQ, you can finesse the left opponent with 100% confidence).
    $endgroup$
    – iBuͦͦͦg
    Apr 4 at 16:42




    $begingroup$
    You know how the cards are distributed so finesses can win whenever possible (e.g. left has KJ and dummy has AQ, you can finesse the left opponent with 100% confidence).
    $endgroup$
    – iBuͦͦͦg
    Apr 4 at 16:42




    1




    1




    $begingroup$
    For 3, you don't need QS because you can make both K and Q fall down with one Ace (from two sides), if K and Q are the only spades that L and R have.
    $endgroup$
    – iBuͦͦͦg
    Apr 4 at 16:44




    $begingroup$
    For 3, you don't need QS because you can make both K and Q fall down with one Ace (from two sides), if K and Q are the only spades that L and R have.
    $endgroup$
    – iBuͦͦͦg
    Apr 4 at 16:44












    $begingroup$
    Ok, if I can arrange the opponents' cards too, the I can go a lot lower for 3, hang on a minute..
    $endgroup$
    – Bass
    Apr 4 at 16:51




    $begingroup$
    Ok, if I can arrange the opponents' cards too, the I can go a lot lower for 3, hang on a minute..
    $endgroup$
    – Bass
    Apr 4 at 16:51












    $begingroup$
    Forcible 7S can be done with 5HCP. See my answer for more details.
    $endgroup$
    – supercat
    Apr 4 at 22:18




    $begingroup$
    Forcible 7S can be done with 5HCP. See my answer for more details.
    $endgroup$
    – supercat
    Apr 4 at 22:18











    7












    $begingroup$

    7S can be forcibly won with five HCP:



    .                   ♠8765432/-/♦765432/-
    ♠K/♥AK/♦AKQJ/♣AKQJT9 ♠Q/♥QJ/♦T98/♣8765432
    . ♠AJT9/♥T98765432/-/-


    If West leads a spade, South takes the ace. If West leads a heart, North ruffs and leads a spade to the ace. Otherwise South ruffs low and leads the ace of spades.



    South can then ruff two hearts (or three, if desired), using spades or diamond ruffs to return to hand, and run the hearts until North has nothing but spades.



    A slightly more detailed explanation, for those not familiar with bridge:



    On the first trick, if West leads a spade (the king), North will have to play a spade 2-8 (all equivalent), East will be required to play the queen, and South can play the ace and take the trick. Neither East nor West will have any spades left.



    If West leads anything else, it will be in a suit that either North or South doesn't have. A player without any card in a suit that's led may then play any card that is in their hand, including a spade (if one is possessed). The highest spade played on a trick, if any, will take the trick. Thus, either North or South will be able to play a spade on the first trick and then lead a spade, forcing East and West to play the king and queen while South takes the ace, again leaving East and West without any spades.



    If South plays a suit that North doesn't have but the opponents do (hearts), North will be able to play a spade which will prevail over any heart that East or West plays. The first time South takes control, it will be after spades have been led once, and South will have played at most of his spades prior to that, so South will have at least two high spades left. Thus, the first two times North trumps a heart, North will be able to lead a spade that South can capture to regain the lead.



    The first two times hearts are led, the opponents will each have to play one. After that, nobody except South will have any hearts; if South leads hearts and North discards diamonds until there are none left, the hearts will take tricks. At that point, North will have nothing but trump cards, so on every remaining trick, no matter what North and South do, either North will lead a trump which is captured by a higher trump in South's hand, South will lead a heart which gets captured by a trump in North's hand, or North will lead a spade upon which South discards a heart.






    share|improve this answer











    $endgroup$













    • $begingroup$
      Nice! Since this isn't a Bridge forum, most of the people here will probably have a hard time reading this particular notation. (Also, I kind of get how S can "ruff" hearts although his hand is full of hearts, but as a non-native speaker, it took a little time to puzzle that one out.)
      $endgroup$
      – Bass
      Apr 4 at 22:38










    • $begingroup$
      Wow! Real genius!
      $endgroup$
      – iBuͦͦͦg
      Apr 5 at 0:18










    • $begingroup$
      @Bass: Is that clearer.
      $endgroup$
      – supercat
      2 days ago










    • $begingroup$
      Great! I added some suit symbols to make it even easier to read.
      $endgroup$
      – Bass
      yesterday
















    7












    $begingroup$

    7S can be forcibly won with five HCP:



    .                   ♠8765432/-/♦765432/-
    ♠K/♥AK/♦AKQJ/♣AKQJT9 ♠Q/♥QJ/♦T98/♣8765432
    . ♠AJT9/♥T98765432/-/-


    If West leads a spade, South takes the ace. If West leads a heart, North ruffs and leads a spade to the ace. Otherwise South ruffs low and leads the ace of spades.



    South can then ruff two hearts (or three, if desired), using spades or diamond ruffs to return to hand, and run the hearts until North has nothing but spades.



    A slightly more detailed explanation, for those not familiar with bridge:



    On the first trick, if West leads a spade (the king), North will have to play a spade 2-8 (all equivalent), East will be required to play the queen, and South can play the ace and take the trick. Neither East nor West will have any spades left.



    If West leads anything else, it will be in a suit that either North or South doesn't have. A player without any card in a suit that's led may then play any card that is in their hand, including a spade (if one is possessed). The highest spade played on a trick, if any, will take the trick. Thus, either North or South will be able to play a spade on the first trick and then lead a spade, forcing East and West to play the king and queen while South takes the ace, again leaving East and West without any spades.



    If South plays a suit that North doesn't have but the opponents do (hearts), North will be able to play a spade which will prevail over any heart that East or West plays. The first time South takes control, it will be after spades have been led once, and South will have played at most of his spades prior to that, so South will have at least two high spades left. Thus, the first two times North trumps a heart, North will be able to lead a spade that South can capture to regain the lead.



    The first two times hearts are led, the opponents will each have to play one. After that, nobody except South will have any hearts; if South leads hearts and North discards diamonds until there are none left, the hearts will take tricks. At that point, North will have nothing but trump cards, so on every remaining trick, no matter what North and South do, either North will lead a trump which is captured by a higher trump in South's hand, South will lead a heart which gets captured by a trump in North's hand, or North will lead a spade upon which South discards a heart.






    share|improve this answer











    $endgroup$













    • $begingroup$
      Nice! Since this isn't a Bridge forum, most of the people here will probably have a hard time reading this particular notation. (Also, I kind of get how S can "ruff" hearts although his hand is full of hearts, but as a non-native speaker, it took a little time to puzzle that one out.)
      $endgroup$
      – Bass
      Apr 4 at 22:38










    • $begingroup$
      Wow! Real genius!
      $endgroup$
      – iBuͦͦͦg
      Apr 5 at 0:18










    • $begingroup$
      @Bass: Is that clearer.
      $endgroup$
      – supercat
      2 days ago










    • $begingroup$
      Great! I added some suit symbols to make it even easier to read.
      $endgroup$
      – Bass
      yesterday














    7












    7








    7





    $begingroup$

    7S can be forcibly won with five HCP:



    .                   ♠8765432/-/♦765432/-
    ♠K/♥AK/♦AKQJ/♣AKQJT9 ♠Q/♥QJ/♦T98/♣8765432
    . ♠AJT9/♥T98765432/-/-


    If West leads a spade, South takes the ace. If West leads a heart, North ruffs and leads a spade to the ace. Otherwise South ruffs low and leads the ace of spades.



    South can then ruff two hearts (or three, if desired), using spades or diamond ruffs to return to hand, and run the hearts until North has nothing but spades.



    A slightly more detailed explanation, for those not familiar with bridge:



    On the first trick, if West leads a spade (the king), North will have to play a spade 2-8 (all equivalent), East will be required to play the queen, and South can play the ace and take the trick. Neither East nor West will have any spades left.



    If West leads anything else, it will be in a suit that either North or South doesn't have. A player without any card in a suit that's led may then play any card that is in their hand, including a spade (if one is possessed). The highest spade played on a trick, if any, will take the trick. Thus, either North or South will be able to play a spade on the first trick and then lead a spade, forcing East and West to play the king and queen while South takes the ace, again leaving East and West without any spades.



    If South plays a suit that North doesn't have but the opponents do (hearts), North will be able to play a spade which will prevail over any heart that East or West plays. The first time South takes control, it will be after spades have been led once, and South will have played at most of his spades prior to that, so South will have at least two high spades left. Thus, the first two times North trumps a heart, North will be able to lead a spade that South can capture to regain the lead.



    The first two times hearts are led, the opponents will each have to play one. After that, nobody except South will have any hearts; if South leads hearts and North discards diamonds until there are none left, the hearts will take tricks. At that point, North will have nothing but trump cards, so on every remaining trick, no matter what North and South do, either North will lead a trump which is captured by a higher trump in South's hand, South will lead a heart which gets captured by a trump in North's hand, or North will lead a spade upon which South discards a heart.






    share|improve this answer











    $endgroup$



    7S can be forcibly won with five HCP:



    .                   ♠8765432/-/♦765432/-
    ♠K/♥AK/♦AKQJ/♣AKQJT9 ♠Q/♥QJ/♦T98/♣8765432
    . ♠AJT9/♥T98765432/-/-


    If West leads a spade, South takes the ace. If West leads a heart, North ruffs and leads a spade to the ace. Otherwise South ruffs low and leads the ace of spades.



    South can then ruff two hearts (or three, if desired), using spades or diamond ruffs to return to hand, and run the hearts until North has nothing but spades.



    A slightly more detailed explanation, for those not familiar with bridge:



    On the first trick, if West leads a spade (the king), North will have to play a spade 2-8 (all equivalent), East will be required to play the queen, and South can play the ace and take the trick. Neither East nor West will have any spades left.



    If West leads anything else, it will be in a suit that either North or South doesn't have. A player without any card in a suit that's led may then play any card that is in their hand, including a spade (if one is possessed). The highest spade played on a trick, if any, will take the trick. Thus, either North or South will be able to play a spade on the first trick and then lead a spade, forcing East and West to play the king and queen while South takes the ace, again leaving East and West without any spades.



    If South plays a suit that North doesn't have but the opponents do (hearts), North will be able to play a spade which will prevail over any heart that East or West plays. The first time South takes control, it will be after spades have been led once, and South will have played at most of his spades prior to that, so South will have at least two high spades left. Thus, the first two times North trumps a heart, North will be able to lead a spade that South can capture to regain the lead.



    The first two times hearts are led, the opponents will each have to play one. After that, nobody except South will have any hearts; if South leads hearts and North discards diamonds until there are none left, the hearts will take tricks. At that point, North will have nothing but trump cards, so on every remaining trick, no matter what North and South do, either North will lead a trump which is captured by a higher trump in South's hand, South will lead a heart which gets captured by a trump in North's hand, or North will lead a spade upon which South discards a heart.







    share|improve this answer














    share|improve this answer



    share|improve this answer








    edited yesterday









    Bass

    30.9k472188




    30.9k472188










    answered Apr 4 at 22:12









    supercatsupercat

    1,707417




    1,707417












    • $begingroup$
      Nice! Since this isn't a Bridge forum, most of the people here will probably have a hard time reading this particular notation. (Also, I kind of get how S can "ruff" hearts although his hand is full of hearts, but as a non-native speaker, it took a little time to puzzle that one out.)
      $endgroup$
      – Bass
      Apr 4 at 22:38










    • $begingroup$
      Wow! Real genius!
      $endgroup$
      – iBuͦͦͦg
      Apr 5 at 0:18










    • $begingroup$
      @Bass: Is that clearer.
      $endgroup$
      – supercat
      2 days ago










    • $begingroup$
      Great! I added some suit symbols to make it even easier to read.
      $endgroup$
      – Bass
      yesterday


















    • $begingroup$
      Nice! Since this isn't a Bridge forum, most of the people here will probably have a hard time reading this particular notation. (Also, I kind of get how S can "ruff" hearts although his hand is full of hearts, but as a non-native speaker, it took a little time to puzzle that one out.)
      $endgroup$
      – Bass
      Apr 4 at 22:38










    • $begingroup$
      Wow! Real genius!
      $endgroup$
      – iBuͦͦͦg
      Apr 5 at 0:18










    • $begingroup$
      @Bass: Is that clearer.
      $endgroup$
      – supercat
      2 days ago










    • $begingroup$
      Great! I added some suit symbols to make it even easier to read.
      $endgroup$
      – Bass
      yesterday
















    $begingroup$
    Nice! Since this isn't a Bridge forum, most of the people here will probably have a hard time reading this particular notation. (Also, I kind of get how S can "ruff" hearts although his hand is full of hearts, but as a non-native speaker, it took a little time to puzzle that one out.)
    $endgroup$
    – Bass
    Apr 4 at 22:38




    $begingroup$
    Nice! Since this isn't a Bridge forum, most of the people here will probably have a hard time reading this particular notation. (Also, I kind of get how S can "ruff" hearts although his hand is full of hearts, but as a non-native speaker, it took a little time to puzzle that one out.)
    $endgroup$
    – Bass
    Apr 4 at 22:38












    $begingroup$
    Wow! Real genius!
    $endgroup$
    – iBuͦͦͦg
    Apr 5 at 0:18




    $begingroup$
    Wow! Real genius!
    $endgroup$
    – iBuͦͦͦg
    Apr 5 at 0:18












    $begingroup$
    @Bass: Is that clearer.
    $endgroup$
    – supercat
    2 days ago




    $begingroup$
    @Bass: Is that clearer.
    $endgroup$
    – supercat
    2 days ago












    $begingroup$
    Great! I added some suit symbols to make it even easier to read.
    $endgroup$
    – Bass
    yesterday




    $begingroup$
    Great! I added some suit symbols to make it even easier to read.
    $endgroup$
    – Bass
    yesterday











    3












    $begingroup$

    I think for 1, the answer can be as low as




    0




    A possible distribution of cards, and a draft of play:




    me - opp on left - dummy - opp on right

    10$heartsuit$ - 6$heartsuit$ - 2$heartsuit$ - A$diamondsuit$

    9$heartsuit$ - 5$heartsuit$ - 6$diamondsuit$ - K$diamondsuit$

    8$heartsuit$ - 4$heartsuit$ - 5$diamondsuit$ - Q$diamondsuit$

    7$heartsuit$ - 3$heartsuit$ - 4$diamondsuit$ - J$diamondsuit$

    10$diamondsuit$ - A$heartsuit$ - 2$diamondsuit$ - A$clubsuit$

    9$diamondsuit$ - K$heartsuit$ - 3$diamondsuit$ - K$clubsuit$

    8$diamondsuit$ - Q$heartsuit$ - 8$spadesuit$ - Q$clubsuit$

    7$diamondsuit$ - J$heartsuit$ - 7$spadesuit$ - J$clubsuit$

    10$clubsuit$ - 6$clubsuit$ - 2$clubsuit$ - A$spadesuit$

    9$clubsuit$ - 5$clubsuit$ - 5$spadesuit$ - K$spadesuit$

    8$clubsuit$ - 4$clubsuit$ - 4$spadesuit$ - Q$spadesuit$

    7$clubsuit$ - 3$clubsuit$ - 3$spadesuit$ - J$spadesuit$

    10$spadesuit$ - 6$spadesuit$ - 2$spadesuit$ - 9$spadesuit$




    The key idea is:




    Let one of the opponents (in this case, the on on your right) be void in one suit (hearts in our case), so he can start discarding high cards already in the first trick. Once He gets rid all the HCP-worth cards in one suit, a change of suits (both on his, and our side) can take place. Meanwhile the other opp has to be long in the last suit, so he can foolishly hold back the highest cards of that suit to the point, where we get void in that suit.







    share|improve this answer









    $endgroup$


















      3












      $begingroup$

      I think for 1, the answer can be as low as




      0




      A possible distribution of cards, and a draft of play:




      me - opp on left - dummy - opp on right

      10$heartsuit$ - 6$heartsuit$ - 2$heartsuit$ - A$diamondsuit$

      9$heartsuit$ - 5$heartsuit$ - 6$diamondsuit$ - K$diamondsuit$

      8$heartsuit$ - 4$heartsuit$ - 5$diamondsuit$ - Q$diamondsuit$

      7$heartsuit$ - 3$heartsuit$ - 4$diamondsuit$ - J$diamondsuit$

      10$diamondsuit$ - A$heartsuit$ - 2$diamondsuit$ - A$clubsuit$

      9$diamondsuit$ - K$heartsuit$ - 3$diamondsuit$ - K$clubsuit$

      8$diamondsuit$ - Q$heartsuit$ - 8$spadesuit$ - Q$clubsuit$

      7$diamondsuit$ - J$heartsuit$ - 7$spadesuit$ - J$clubsuit$

      10$clubsuit$ - 6$clubsuit$ - 2$clubsuit$ - A$spadesuit$

      9$clubsuit$ - 5$clubsuit$ - 5$spadesuit$ - K$spadesuit$

      8$clubsuit$ - 4$clubsuit$ - 4$spadesuit$ - Q$spadesuit$

      7$clubsuit$ - 3$clubsuit$ - 3$spadesuit$ - J$spadesuit$

      10$spadesuit$ - 6$spadesuit$ - 2$spadesuit$ - 9$spadesuit$




      The key idea is:




      Let one of the opponents (in this case, the on on your right) be void in one suit (hearts in our case), so he can start discarding high cards already in the first trick. Once He gets rid all the HCP-worth cards in one suit, a change of suits (both on his, and our side) can take place. Meanwhile the other opp has to be long in the last suit, so he can foolishly hold back the highest cards of that suit to the point, where we get void in that suit.







      share|improve this answer









      $endgroup$
















        3












        3








        3





        $begingroup$

        I think for 1, the answer can be as low as




        0




        A possible distribution of cards, and a draft of play:




        me - opp on left - dummy - opp on right

        10$heartsuit$ - 6$heartsuit$ - 2$heartsuit$ - A$diamondsuit$

        9$heartsuit$ - 5$heartsuit$ - 6$diamondsuit$ - K$diamondsuit$

        8$heartsuit$ - 4$heartsuit$ - 5$diamondsuit$ - Q$diamondsuit$

        7$heartsuit$ - 3$heartsuit$ - 4$diamondsuit$ - J$diamondsuit$

        10$diamondsuit$ - A$heartsuit$ - 2$diamondsuit$ - A$clubsuit$

        9$diamondsuit$ - K$heartsuit$ - 3$diamondsuit$ - K$clubsuit$

        8$diamondsuit$ - Q$heartsuit$ - 8$spadesuit$ - Q$clubsuit$

        7$diamondsuit$ - J$heartsuit$ - 7$spadesuit$ - J$clubsuit$

        10$clubsuit$ - 6$clubsuit$ - 2$clubsuit$ - A$spadesuit$

        9$clubsuit$ - 5$clubsuit$ - 5$spadesuit$ - K$spadesuit$

        8$clubsuit$ - 4$clubsuit$ - 4$spadesuit$ - Q$spadesuit$

        7$clubsuit$ - 3$clubsuit$ - 3$spadesuit$ - J$spadesuit$

        10$spadesuit$ - 6$spadesuit$ - 2$spadesuit$ - 9$spadesuit$




        The key idea is:




        Let one of the opponents (in this case, the on on your right) be void in one suit (hearts in our case), so he can start discarding high cards already in the first trick. Once He gets rid all the HCP-worth cards in one suit, a change of suits (both on his, and our side) can take place. Meanwhile the other opp has to be long in the last suit, so he can foolishly hold back the highest cards of that suit to the point, where we get void in that suit.







        share|improve this answer









        $endgroup$



        I think for 1, the answer can be as low as




        0




        A possible distribution of cards, and a draft of play:




        me - opp on left - dummy - opp on right

        10$heartsuit$ - 6$heartsuit$ - 2$heartsuit$ - A$diamondsuit$

        9$heartsuit$ - 5$heartsuit$ - 6$diamondsuit$ - K$diamondsuit$

        8$heartsuit$ - 4$heartsuit$ - 5$diamondsuit$ - Q$diamondsuit$

        7$heartsuit$ - 3$heartsuit$ - 4$diamondsuit$ - J$diamondsuit$

        10$diamondsuit$ - A$heartsuit$ - 2$diamondsuit$ - A$clubsuit$

        9$diamondsuit$ - K$heartsuit$ - 3$diamondsuit$ - K$clubsuit$

        8$diamondsuit$ - Q$heartsuit$ - 8$spadesuit$ - Q$clubsuit$

        7$diamondsuit$ - J$heartsuit$ - 7$spadesuit$ - J$clubsuit$

        10$clubsuit$ - 6$clubsuit$ - 2$clubsuit$ - A$spadesuit$

        9$clubsuit$ - 5$clubsuit$ - 5$spadesuit$ - K$spadesuit$

        8$clubsuit$ - 4$clubsuit$ - 4$spadesuit$ - Q$spadesuit$

        7$clubsuit$ - 3$clubsuit$ - 3$spadesuit$ - J$spadesuit$

        10$spadesuit$ - 6$spadesuit$ - 2$spadesuit$ - 9$spadesuit$




        The key idea is:




        Let one of the opponents (in this case, the on on your right) be void in one suit (hearts in our case), so he can start discarding high cards already in the first trick. Once He gets rid all the HCP-worth cards in one suit, a change of suits (both on his, and our side) can take place. Meanwhile the other opp has to be long in the last suit, so he can foolishly hold back the highest cards of that suit to the point, where we get void in that suit.








        share|improve this answer












        share|improve this answer



        share|improve this answer










        answered Apr 4 at 15:13









        eliaselias

        8,94332455




        8,94332455























            2












            $begingroup$

            Assuming you use the 4-3-2-1 scoring for A/K/Q/J with no points for other cards and no adjustments for suits:



            You can win a 7S having AJ1098765432S 109D, and your partner having 0 pt hand with the seven lowest diamonds, and your opponents splitting the four high diamonds at two card a piece, and the two remaining spades at one a piece. First trick, you take the KQ S with your AS. Second and third tricks you take AKQJ D with any two of your S. You are then guaranteed the next 10 tricks by virtue of having all the trump cards and highest remaining of a suit. Total of 5 points.



            You can win 7NT with an identical hand, and identical pattern of play.



            I'm not an experienced enough bridge player to figure out how to guarantee a seven trick hand with the lowest HCP total. It obviously can be done for 7S with all thirteen spades (10 points).



            What I originally thought was possible for guaranteeing 7NT was impossible, but it is definitely doable with your partner having all four aces, and you have the 2 of all four suits and KQJ1098765 of any one suit, for a total of 22 points






            share|improve this answer










            New contributor




            Moko19 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
            Check out our Code of Conduct.






            $endgroup$













            • $begingroup$
              You gave the right answer for 7S (7 with trump), but as answered by elias, 7NT is doable without a single HCP.
              $endgroup$
              – iBuͦͦͦg
              Apr 4 at 16:39
















            2












            $begingroup$

            Assuming you use the 4-3-2-1 scoring for A/K/Q/J with no points for other cards and no adjustments for suits:



            You can win a 7S having AJ1098765432S 109D, and your partner having 0 pt hand with the seven lowest diamonds, and your opponents splitting the four high diamonds at two card a piece, and the two remaining spades at one a piece. First trick, you take the KQ S with your AS. Second and third tricks you take AKQJ D with any two of your S. You are then guaranteed the next 10 tricks by virtue of having all the trump cards and highest remaining of a suit. Total of 5 points.



            You can win 7NT with an identical hand, and identical pattern of play.



            I'm not an experienced enough bridge player to figure out how to guarantee a seven trick hand with the lowest HCP total. It obviously can be done for 7S with all thirteen spades (10 points).



            What I originally thought was possible for guaranteeing 7NT was impossible, but it is definitely doable with your partner having all four aces, and you have the 2 of all four suits and KQJ1098765 of any one suit, for a total of 22 points






            share|improve this answer










            New contributor




            Moko19 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
            Check out our Code of Conduct.






            $endgroup$













            • $begingroup$
              You gave the right answer for 7S (7 with trump), but as answered by elias, 7NT is doable without a single HCP.
              $endgroup$
              – iBuͦͦͦg
              Apr 4 at 16:39














            2












            2








            2





            $begingroup$

            Assuming you use the 4-3-2-1 scoring for A/K/Q/J with no points for other cards and no adjustments for suits:



            You can win a 7S having AJ1098765432S 109D, and your partner having 0 pt hand with the seven lowest diamonds, and your opponents splitting the four high diamonds at two card a piece, and the two remaining spades at one a piece. First trick, you take the KQ S with your AS. Second and third tricks you take AKQJ D with any two of your S. You are then guaranteed the next 10 tricks by virtue of having all the trump cards and highest remaining of a suit. Total of 5 points.



            You can win 7NT with an identical hand, and identical pattern of play.



            I'm not an experienced enough bridge player to figure out how to guarantee a seven trick hand with the lowest HCP total. It obviously can be done for 7S with all thirteen spades (10 points).



            What I originally thought was possible for guaranteeing 7NT was impossible, but it is definitely doable with your partner having all four aces, and you have the 2 of all four suits and KQJ1098765 of any one suit, for a total of 22 points






            share|improve this answer










            New contributor




            Moko19 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
            Check out our Code of Conduct.






            $endgroup$



            Assuming you use the 4-3-2-1 scoring for A/K/Q/J with no points for other cards and no adjustments for suits:



            You can win a 7S having AJ1098765432S 109D, and your partner having 0 pt hand with the seven lowest diamonds, and your opponents splitting the four high diamonds at two card a piece, and the two remaining spades at one a piece. First trick, you take the KQ S with your AS. Second and third tricks you take AKQJ D with any two of your S. You are then guaranteed the next 10 tricks by virtue of having all the trump cards and highest remaining of a suit. Total of 5 points.



            You can win 7NT with an identical hand, and identical pattern of play.



            I'm not an experienced enough bridge player to figure out how to guarantee a seven trick hand with the lowest HCP total. It obviously can be done for 7S with all thirteen spades (10 points).



            What I originally thought was possible for guaranteeing 7NT was impossible, but it is definitely doable with your partner having all four aces, and you have the 2 of all four suits and KQJ1098765 of any one suit, for a total of 22 points







            share|improve this answer










            New contributor




            Moko19 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
            Check out our Code of Conduct.









            share|improve this answer



            share|improve this answer








            edited Apr 4 at 15:18





















            New contributor




            Moko19 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
            Check out our Code of Conduct.









            answered Apr 4 at 14:01









            Moko19Moko19

            1233




            1233




            New contributor




            Moko19 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
            Check out our Code of Conduct.





            New contributor





            Moko19 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
            Check out our Code of Conduct.






            Moko19 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
            Check out our Code of Conduct.












            • $begingroup$
              You gave the right answer for 7S (7 with trump), but as answered by elias, 7NT is doable without a single HCP.
              $endgroup$
              – iBuͦͦͦg
              Apr 4 at 16:39


















            • $begingroup$
              You gave the right answer for 7S (7 with trump), but as answered by elias, 7NT is doable without a single HCP.
              $endgroup$
              – iBuͦͦͦg
              Apr 4 at 16:39
















            $begingroup$
            You gave the right answer for 7S (7 with trump), but as answered by elias, 7NT is doable without a single HCP.
            $endgroup$
            – iBuͦͦͦg
            Apr 4 at 16:39




            $begingroup$
            You gave the right answer for 7S (7 with trump), but as answered by elias, 7NT is doable without a single HCP.
            $endgroup$
            – iBuͦͦͦg
            Apr 4 at 16:39


















            draft saved

            draft discarded




















































            Thanks for contributing an answer to Puzzling Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fpuzzling.stackexchange.com%2fquestions%2f81392%2fwhat-is-the-minimum-high-card-points-needed-for-a-partnership-to-be-able-to-clai%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Masuk log Menu navigasi

            Identifying “long and narrow” polygons in with PostGISlength and width of polygonWhy postgis st_overlaps reports Qgis' “avoid intersections” generated polygon as overlapping with others?Adjusting polygons to boundary and filling holesDrawing polygons with fixed area?How to remove spikes in Polygons with PostGISDeleting sliver polygons after difference operation in QGIS?Snapping boundaries in PostGISSplit polygon into parts adding attributes based on underlying polygon in QGISSplitting overlap between polygons and assign to nearest polygon using PostGIS?Expanding polygons and clipping at midpoint?Removing Intersection of Buffers in Same Layers

            Старые Смолеговицы Содержание История | География | Демография | Достопримечательности | Примечания | НавигацияHGЯOLHGЯOL41 206 832 01641 606 406 141Административно-территориальное деление Ленинградской области«Переписная оброчная книга Водской пятины 1500 года», С. 793«Карта Ингерманландии: Ивангорода, Яма, Копорья, Нотеборга», по материалам 1676 г.«Генеральная карта провинции Ингерманландии» Э. Белинга и А. Андерсина, 1704 г., составлена по материалам 1678 г.«Географический чертёж над Ижорскою землей со своими городами» Адриана Шонбека 1705 г.Новая и достоверная всей Ингерманландии ланткарта. Грав. А. Ростовцев. СПб., 1727 г.Топографическая карта Санкт-Петербургской губернии. 5-и верстка. Шуберт. 1834 г.Описание Санкт-Петербургской губернии по уездам и станамСпецкарта западной части России Ф. Ф. Шуберта. 1844 г.Алфавитный список селений по уездам и станам С.-Петербургской губернииСписки населённых мест Российской Империи, составленные и издаваемые центральным статистическим комитетом министерства внутренних дел. XXXVII. Санкт-Петербургская губерния. По состоянию на 1862 год. СПб. 1864. С. 203Материалы по статистике народного хозяйства в С.-Петербургской губернии. Вып. IX. Частновладельческое хозяйство в Ямбургском уезде. СПб, 1888, С. 146, С. 2, 7, 54Положение о гербе муниципального образования Курское сельское поселениеСправочник истории административно-территориального деления Ленинградской области.Топографическая карта Ленинградской области, квадрат О-35-23-В (Хотыницы), 1930 г.АрхивированоАдминистративно-территориальное деление Ленинградской области. — Л., 1933, С. 27, 198АрхивированоАдминистративно-экономический справочник по Ленинградской области. — Л., 1936, с. 219АрхивированоАдминистративно-территориальное деление Ленинградской области. — Л., 1966, с. 175АрхивированоАдминистративно-территориальное деление Ленинградской области. — Лениздат, 1973, С. 180АрхивированоАдминистративно-территориальное деление Ленинградской области. — Лениздат, 1990, ISBN 5-289-00612-5, С. 38АрхивированоАдминистративно-территориальное деление Ленинградской области. — СПб., 2007, с. 60АрхивированоКоряков Юрий База данных «Этно-языковой состав населённых пунктов России». Ленинградская область.Административно-территориальное деление Ленинградской области. — СПб, 1997, ISBN 5-86153-055-6, С. 41АрхивированоКультовый комплекс Старые Смолеговицы // Электронная энциклопедия ЭрмитажаПроблемы выявления, изучения и сохранения культовых комплексов с каменными крестами: по материалам работ 2016-2017 гг. в Ленинградской области