Do infinite dimensional systems make sense?












6












$begingroup$


I'm learning infinite-dimensional systems in mathematical viewpoint and trying to understand it from physical perspective.



I would like to understand if infinite-dimensional systems make sense in physics, especially when it becomes necessary in quantum control theory. Are there any simple and intuitive examples?










share|cite|improve this question









New contributor




Gao is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$








  • 5




    $begingroup$
    "Makes sense" is kind of hard to interpret. But they're definitely useful as models describing the observable behavior of some systems. In fact, you're probably referring to countably-infinite-dimensional spaces, aka separable. There are also uses for uncountably-infinite-dimensional (aka non separable) spaces, e.g., physics.stackexchange.com/q/60608 (and google for lots more stuff).
    $endgroup$
    – John Forkosh
    2 days ago


















6












$begingroup$


I'm learning infinite-dimensional systems in mathematical viewpoint and trying to understand it from physical perspective.



I would like to understand if infinite-dimensional systems make sense in physics, especially when it becomes necessary in quantum control theory. Are there any simple and intuitive examples?










share|cite|improve this question









New contributor




Gao is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$








  • 5




    $begingroup$
    "Makes sense" is kind of hard to interpret. But they're definitely useful as models describing the observable behavior of some systems. In fact, you're probably referring to countably-infinite-dimensional spaces, aka separable. There are also uses for uncountably-infinite-dimensional (aka non separable) spaces, e.g., physics.stackexchange.com/q/60608 (and google for lots more stuff).
    $endgroup$
    – John Forkosh
    2 days ago
















6












6








6


1



$begingroup$


I'm learning infinite-dimensional systems in mathematical viewpoint and trying to understand it from physical perspective.



I would like to understand if infinite-dimensional systems make sense in physics, especially when it becomes necessary in quantum control theory. Are there any simple and intuitive examples?










share|cite|improve this question









New contributor




Gao is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




I'm learning infinite-dimensional systems in mathematical viewpoint and trying to understand it from physical perspective.



I would like to understand if infinite-dimensional systems make sense in physics, especially when it becomes necessary in quantum control theory. Are there any simple and intuitive examples?







quantum-mechanics hilbert-space






share|cite|improve this question









New contributor




Gao is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




Gao is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited 2 days ago









Ruslan

9,81843173




9,81843173






New contributor




Gao is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 2 days ago









GaoGao

343




343




New contributor




Gao is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Gao is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Gao is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.








  • 5




    $begingroup$
    "Makes sense" is kind of hard to interpret. But they're definitely useful as models describing the observable behavior of some systems. In fact, you're probably referring to countably-infinite-dimensional spaces, aka separable. There are also uses for uncountably-infinite-dimensional (aka non separable) spaces, e.g., physics.stackexchange.com/q/60608 (and google for lots more stuff).
    $endgroup$
    – John Forkosh
    2 days ago
















  • 5




    $begingroup$
    "Makes sense" is kind of hard to interpret. But they're definitely useful as models describing the observable behavior of some systems. In fact, you're probably referring to countably-infinite-dimensional spaces, aka separable. There are also uses for uncountably-infinite-dimensional (aka non separable) spaces, e.g., physics.stackexchange.com/q/60608 (and google for lots more stuff).
    $endgroup$
    – John Forkosh
    2 days ago










5




5




$begingroup$
"Makes sense" is kind of hard to interpret. But they're definitely useful as models describing the observable behavior of some systems. In fact, you're probably referring to countably-infinite-dimensional spaces, aka separable. There are also uses for uncountably-infinite-dimensional (aka non separable) spaces, e.g., physics.stackexchange.com/q/60608 (and google for lots more stuff).
$endgroup$
– John Forkosh
2 days ago






$begingroup$
"Makes sense" is kind of hard to interpret. But they're definitely useful as models describing the observable behavior of some systems. In fact, you're probably referring to countably-infinite-dimensional spaces, aka separable. There are also uses for uncountably-infinite-dimensional (aka non separable) spaces, e.g., physics.stackexchange.com/q/60608 (and google for lots more stuff).
$endgroup$
– John Forkosh
2 days ago












2 Answers
2






active

oldest

votes


















22












$begingroup$

Welcome to Stack Exchange!



I do not know much about quantum control theory, but I can give you a simple example from regular quantum mechanics: that of a particle in a box. This is one of the simplest systems one can study in QM, but even here an infinite dimensional space shows up.

Indexing the energy eigenstates by $n$ so that $$H|nrangle=E_n|nrangle$$ there is an infinite number of possible states, one for every integer. Every state with its own energy: $$E_n=frac{n^2pi^2hbar^2}{2mL^2}.$$ Thus if you want to describe a general quantum state in this system you would write it down as $$|psirangle=sum_{n=1}^infty c_n|nrangle,$$ where $c_n$ is a complex number. $|psirangle$ is then an example of a vector in an infinite dimensional space where every possible state is a basis vector, and the $c_n$ are the expansion coefficients in that basis.



You can of course imagine the $n$ indexing some other collection of states of some other system. Indeed, in most cases the dimension of the space of all possible states of a quantum system will be infinite dimensional.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Welcome on the Stack Exchange :-)
    $endgroup$
    – peterh
    yesterday



















4












$begingroup$

"Infinite" for me does not make much sense in physics. It is a nice mathematical tools, you need it to make calculations; but for real things I prefer "very large". I have seen many "very large" things; I have never seen anything infinite.



Anyway, more seriously, we use all the time infinite dimensional spaces, they are useful. From the example of "particle in a box" by >JSorngard:



You want to keep your particle in one eigenstate, against external disturbance. It can excape going to other eigenstates. Those, in theory, are infinite, so to calculate the probability for your particle to fall off from your favourite eigenstate, you sum the transition probability to each of all those (infinite) states. And it works!!



In practice there are not really infinite eigenstates; the particle is confined by some actual physical trap that is finite in size and can hold only finite energy. But incredibly often you can disregard this finiteness, as the infinite sum is almost identical to the (very large) sum of the actual eigenstate.



Another argument in favour of usefulness/reality of infinites is about notation: we use infinite things to define & manipulate a normal object.
Example is the Taylor expansion of $e^x$:
It is an infinite sum, its useful, don't give rise to anything nonsensical.






share|cite|improve this answer









$endgroup$









  • 2




    $begingroup$
    "I have never seen anything infinite." are you sure?
    $endgroup$
    – Orangesandlemons
    2 days ago






  • 1




    $begingroup$
    Well, ok, maybe I've seen it, but I didn't manage to see it all, my small brain recorded only a small part!
    $endgroup$
    – patta
    2 days ago










  • $begingroup$
    You will not "see" irrational numbers either, so I guess you can only use finite mathematics to do physics?
    $endgroup$
    – Martin Argerami
    2 days ago






  • 2




    $begingroup$
    Yes, my computer and all sensors I know use only integers; irrationals are just approximated with large integers. About brain and analog machines, we can discuss... My meaning was that a tool (infinity, irrationals..) can "make few sense" in physics, while being actually useful.
    $endgroup$
    – patta
    2 days ago












  • $begingroup$
    Do you happen, by chance, to be a finitist?
    $endgroup$
    – Don Thousand
    yesterday












Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "151"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});






Gao is a new contributor. Be nice, and check out our Code of Conduct.










draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f470675%2fdo-infinite-dimensional-systems-make-sense%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









22












$begingroup$

Welcome to Stack Exchange!



I do not know much about quantum control theory, but I can give you a simple example from regular quantum mechanics: that of a particle in a box. This is one of the simplest systems one can study in QM, but even here an infinite dimensional space shows up.

Indexing the energy eigenstates by $n$ so that $$H|nrangle=E_n|nrangle$$ there is an infinite number of possible states, one for every integer. Every state with its own energy: $$E_n=frac{n^2pi^2hbar^2}{2mL^2}.$$ Thus if you want to describe a general quantum state in this system you would write it down as $$|psirangle=sum_{n=1}^infty c_n|nrangle,$$ where $c_n$ is a complex number. $|psirangle$ is then an example of a vector in an infinite dimensional space where every possible state is a basis vector, and the $c_n$ are the expansion coefficients in that basis.



You can of course imagine the $n$ indexing some other collection of states of some other system. Indeed, in most cases the dimension of the space of all possible states of a quantum system will be infinite dimensional.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Welcome on the Stack Exchange :-)
    $endgroup$
    – peterh
    yesterday
















22












$begingroup$

Welcome to Stack Exchange!



I do not know much about quantum control theory, but I can give you a simple example from regular quantum mechanics: that of a particle in a box. This is one of the simplest systems one can study in QM, but even here an infinite dimensional space shows up.

Indexing the energy eigenstates by $n$ so that $$H|nrangle=E_n|nrangle$$ there is an infinite number of possible states, one for every integer. Every state with its own energy: $$E_n=frac{n^2pi^2hbar^2}{2mL^2}.$$ Thus if you want to describe a general quantum state in this system you would write it down as $$|psirangle=sum_{n=1}^infty c_n|nrangle,$$ where $c_n$ is a complex number. $|psirangle$ is then an example of a vector in an infinite dimensional space where every possible state is a basis vector, and the $c_n$ are the expansion coefficients in that basis.



You can of course imagine the $n$ indexing some other collection of states of some other system. Indeed, in most cases the dimension of the space of all possible states of a quantum system will be infinite dimensional.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Welcome on the Stack Exchange :-)
    $endgroup$
    – peterh
    yesterday














22












22








22





$begingroup$

Welcome to Stack Exchange!



I do not know much about quantum control theory, but I can give you a simple example from regular quantum mechanics: that of a particle in a box. This is one of the simplest systems one can study in QM, but even here an infinite dimensional space shows up.

Indexing the energy eigenstates by $n$ so that $$H|nrangle=E_n|nrangle$$ there is an infinite number of possible states, one for every integer. Every state with its own energy: $$E_n=frac{n^2pi^2hbar^2}{2mL^2}.$$ Thus if you want to describe a general quantum state in this system you would write it down as $$|psirangle=sum_{n=1}^infty c_n|nrangle,$$ where $c_n$ is a complex number. $|psirangle$ is then an example of a vector in an infinite dimensional space where every possible state is a basis vector, and the $c_n$ are the expansion coefficients in that basis.



You can of course imagine the $n$ indexing some other collection of states of some other system. Indeed, in most cases the dimension of the space of all possible states of a quantum system will be infinite dimensional.






share|cite|improve this answer











$endgroup$



Welcome to Stack Exchange!



I do not know much about quantum control theory, but I can give you a simple example from regular quantum mechanics: that of a particle in a box. This is one of the simplest systems one can study in QM, but even here an infinite dimensional space shows up.

Indexing the energy eigenstates by $n$ so that $$H|nrangle=E_n|nrangle$$ there is an infinite number of possible states, one for every integer. Every state with its own energy: $$E_n=frac{n^2pi^2hbar^2}{2mL^2}.$$ Thus if you want to describe a general quantum state in this system you would write it down as $$|psirangle=sum_{n=1}^infty c_n|nrangle,$$ where $c_n$ is a complex number. $|psirangle$ is then an example of a vector in an infinite dimensional space where every possible state is a basis vector, and the $c_n$ are the expansion coefficients in that basis.



You can of course imagine the $n$ indexing some other collection of states of some other system. Indeed, in most cases the dimension of the space of all possible states of a quantum system will be infinite dimensional.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 2 days ago

























answered 2 days ago









JSorngardJSorngard

3416




3416












  • $begingroup$
    Welcome on the Stack Exchange :-)
    $endgroup$
    – peterh
    yesterday


















  • $begingroup$
    Welcome on the Stack Exchange :-)
    $endgroup$
    – peterh
    yesterday
















$begingroup$
Welcome on the Stack Exchange :-)
$endgroup$
– peterh
yesterday




$begingroup$
Welcome on the Stack Exchange :-)
$endgroup$
– peterh
yesterday











4












$begingroup$

"Infinite" for me does not make much sense in physics. It is a nice mathematical tools, you need it to make calculations; but for real things I prefer "very large". I have seen many "very large" things; I have never seen anything infinite.



Anyway, more seriously, we use all the time infinite dimensional spaces, they are useful. From the example of "particle in a box" by >JSorngard:



You want to keep your particle in one eigenstate, against external disturbance. It can excape going to other eigenstates. Those, in theory, are infinite, so to calculate the probability for your particle to fall off from your favourite eigenstate, you sum the transition probability to each of all those (infinite) states. And it works!!



In practice there are not really infinite eigenstates; the particle is confined by some actual physical trap that is finite in size and can hold only finite energy. But incredibly often you can disregard this finiteness, as the infinite sum is almost identical to the (very large) sum of the actual eigenstate.



Another argument in favour of usefulness/reality of infinites is about notation: we use infinite things to define & manipulate a normal object.
Example is the Taylor expansion of $e^x$:
It is an infinite sum, its useful, don't give rise to anything nonsensical.






share|cite|improve this answer









$endgroup$









  • 2




    $begingroup$
    "I have never seen anything infinite." are you sure?
    $endgroup$
    – Orangesandlemons
    2 days ago






  • 1




    $begingroup$
    Well, ok, maybe I've seen it, but I didn't manage to see it all, my small brain recorded only a small part!
    $endgroup$
    – patta
    2 days ago










  • $begingroup$
    You will not "see" irrational numbers either, so I guess you can only use finite mathematics to do physics?
    $endgroup$
    – Martin Argerami
    2 days ago






  • 2




    $begingroup$
    Yes, my computer and all sensors I know use only integers; irrationals are just approximated with large integers. About brain and analog machines, we can discuss... My meaning was that a tool (infinity, irrationals..) can "make few sense" in physics, while being actually useful.
    $endgroup$
    – patta
    2 days ago












  • $begingroup$
    Do you happen, by chance, to be a finitist?
    $endgroup$
    – Don Thousand
    yesterday
















4












$begingroup$

"Infinite" for me does not make much sense in physics. It is a nice mathematical tools, you need it to make calculations; but for real things I prefer "very large". I have seen many "very large" things; I have never seen anything infinite.



Anyway, more seriously, we use all the time infinite dimensional spaces, they are useful. From the example of "particle in a box" by >JSorngard:



You want to keep your particle in one eigenstate, against external disturbance. It can excape going to other eigenstates. Those, in theory, are infinite, so to calculate the probability for your particle to fall off from your favourite eigenstate, you sum the transition probability to each of all those (infinite) states. And it works!!



In practice there are not really infinite eigenstates; the particle is confined by some actual physical trap that is finite in size and can hold only finite energy. But incredibly often you can disregard this finiteness, as the infinite sum is almost identical to the (very large) sum of the actual eigenstate.



Another argument in favour of usefulness/reality of infinites is about notation: we use infinite things to define & manipulate a normal object.
Example is the Taylor expansion of $e^x$:
It is an infinite sum, its useful, don't give rise to anything nonsensical.






share|cite|improve this answer









$endgroup$









  • 2




    $begingroup$
    "I have never seen anything infinite." are you sure?
    $endgroup$
    – Orangesandlemons
    2 days ago






  • 1




    $begingroup$
    Well, ok, maybe I've seen it, but I didn't manage to see it all, my small brain recorded only a small part!
    $endgroup$
    – patta
    2 days ago










  • $begingroup$
    You will not "see" irrational numbers either, so I guess you can only use finite mathematics to do physics?
    $endgroup$
    – Martin Argerami
    2 days ago






  • 2




    $begingroup$
    Yes, my computer and all sensors I know use only integers; irrationals are just approximated with large integers. About brain and analog machines, we can discuss... My meaning was that a tool (infinity, irrationals..) can "make few sense" in physics, while being actually useful.
    $endgroup$
    – patta
    2 days ago












  • $begingroup$
    Do you happen, by chance, to be a finitist?
    $endgroup$
    – Don Thousand
    yesterday














4












4








4





$begingroup$

"Infinite" for me does not make much sense in physics. It is a nice mathematical tools, you need it to make calculations; but for real things I prefer "very large". I have seen many "very large" things; I have never seen anything infinite.



Anyway, more seriously, we use all the time infinite dimensional spaces, they are useful. From the example of "particle in a box" by >JSorngard:



You want to keep your particle in one eigenstate, against external disturbance. It can excape going to other eigenstates. Those, in theory, are infinite, so to calculate the probability for your particle to fall off from your favourite eigenstate, you sum the transition probability to each of all those (infinite) states. And it works!!



In practice there are not really infinite eigenstates; the particle is confined by some actual physical trap that is finite in size and can hold only finite energy. But incredibly often you can disregard this finiteness, as the infinite sum is almost identical to the (very large) sum of the actual eigenstate.



Another argument in favour of usefulness/reality of infinites is about notation: we use infinite things to define & manipulate a normal object.
Example is the Taylor expansion of $e^x$:
It is an infinite sum, its useful, don't give rise to anything nonsensical.






share|cite|improve this answer









$endgroup$



"Infinite" for me does not make much sense in physics. It is a nice mathematical tools, you need it to make calculations; but for real things I prefer "very large". I have seen many "very large" things; I have never seen anything infinite.



Anyway, more seriously, we use all the time infinite dimensional spaces, they are useful. From the example of "particle in a box" by >JSorngard:



You want to keep your particle in one eigenstate, against external disturbance. It can excape going to other eigenstates. Those, in theory, are infinite, so to calculate the probability for your particle to fall off from your favourite eigenstate, you sum the transition probability to each of all those (infinite) states. And it works!!



In practice there are not really infinite eigenstates; the particle is confined by some actual physical trap that is finite in size and can hold only finite energy. But incredibly often you can disregard this finiteness, as the infinite sum is almost identical to the (very large) sum of the actual eigenstate.



Another argument in favour of usefulness/reality of infinites is about notation: we use infinite things to define & manipulate a normal object.
Example is the Taylor expansion of $e^x$:
It is an infinite sum, its useful, don't give rise to anything nonsensical.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered 2 days ago









pattapatta

913




913








  • 2




    $begingroup$
    "I have never seen anything infinite." are you sure?
    $endgroup$
    – Orangesandlemons
    2 days ago






  • 1




    $begingroup$
    Well, ok, maybe I've seen it, but I didn't manage to see it all, my small brain recorded only a small part!
    $endgroup$
    – patta
    2 days ago










  • $begingroup$
    You will not "see" irrational numbers either, so I guess you can only use finite mathematics to do physics?
    $endgroup$
    – Martin Argerami
    2 days ago






  • 2




    $begingroup$
    Yes, my computer and all sensors I know use only integers; irrationals are just approximated with large integers. About brain and analog machines, we can discuss... My meaning was that a tool (infinity, irrationals..) can "make few sense" in physics, while being actually useful.
    $endgroup$
    – patta
    2 days ago












  • $begingroup$
    Do you happen, by chance, to be a finitist?
    $endgroup$
    – Don Thousand
    yesterday














  • 2




    $begingroup$
    "I have never seen anything infinite." are you sure?
    $endgroup$
    – Orangesandlemons
    2 days ago






  • 1




    $begingroup$
    Well, ok, maybe I've seen it, but I didn't manage to see it all, my small brain recorded only a small part!
    $endgroup$
    – patta
    2 days ago










  • $begingroup$
    You will not "see" irrational numbers either, so I guess you can only use finite mathematics to do physics?
    $endgroup$
    – Martin Argerami
    2 days ago






  • 2




    $begingroup$
    Yes, my computer and all sensors I know use only integers; irrationals are just approximated with large integers. About brain and analog machines, we can discuss... My meaning was that a tool (infinity, irrationals..) can "make few sense" in physics, while being actually useful.
    $endgroup$
    – patta
    2 days ago












  • $begingroup$
    Do you happen, by chance, to be a finitist?
    $endgroup$
    – Don Thousand
    yesterday








2




2




$begingroup$
"I have never seen anything infinite." are you sure?
$endgroup$
– Orangesandlemons
2 days ago




$begingroup$
"I have never seen anything infinite." are you sure?
$endgroup$
– Orangesandlemons
2 days ago




1




1




$begingroup$
Well, ok, maybe I've seen it, but I didn't manage to see it all, my small brain recorded only a small part!
$endgroup$
– patta
2 days ago




$begingroup$
Well, ok, maybe I've seen it, but I didn't manage to see it all, my small brain recorded only a small part!
$endgroup$
– patta
2 days ago












$begingroup$
You will not "see" irrational numbers either, so I guess you can only use finite mathematics to do physics?
$endgroup$
– Martin Argerami
2 days ago




$begingroup$
You will not "see" irrational numbers either, so I guess you can only use finite mathematics to do physics?
$endgroup$
– Martin Argerami
2 days ago




2




2




$begingroup$
Yes, my computer and all sensors I know use only integers; irrationals are just approximated with large integers. About brain and analog machines, we can discuss... My meaning was that a tool (infinity, irrationals..) can "make few sense" in physics, while being actually useful.
$endgroup$
– patta
2 days ago






$begingroup$
Yes, my computer and all sensors I know use only integers; irrationals are just approximated with large integers. About brain and analog machines, we can discuss... My meaning was that a tool (infinity, irrationals..) can "make few sense" in physics, while being actually useful.
$endgroup$
– patta
2 days ago














$begingroup$
Do you happen, by chance, to be a finitist?
$endgroup$
– Don Thousand
yesterday




$begingroup$
Do you happen, by chance, to be a finitist?
$endgroup$
– Don Thousand
yesterday










Gao is a new contributor. Be nice, and check out our Code of Conduct.










draft saved

draft discarded


















Gao is a new contributor. Be nice, and check out our Code of Conduct.













Gao is a new contributor. Be nice, and check out our Code of Conduct.












Gao is a new contributor. Be nice, and check out our Code of Conduct.
















Thanks for contributing an answer to Physics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f470675%2fdo-infinite-dimensional-systems-make-sense%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Masuk log Menu navigasi

Identifying “long and narrow” polygons in with PostGISlength and width of polygonWhy postgis st_overlaps reports Qgis' “avoid intersections” generated polygon as overlapping with others?Adjusting polygons to boundary and filling holesDrawing polygons with fixed area?How to remove spikes in Polygons with PostGISDeleting sliver polygons after difference operation in QGIS?Snapping boundaries in PostGISSplit polygon into parts adding attributes based on underlying polygon in QGISSplitting overlap between polygons and assign to nearest polygon using PostGIS?Expanding polygons and clipping at midpoint?Removing Intersection of Buffers in Same Layers

Старые Смолеговицы Содержание История | География | Демография | Достопримечательности | Примечания | НавигацияHGЯOLHGЯOL41 206 832 01641 606 406 141Административно-территориальное деление Ленинградской области«Переписная оброчная книга Водской пятины 1500 года», С. 793«Карта Ингерманландии: Ивангорода, Яма, Копорья, Нотеборга», по материалам 1676 г.«Генеральная карта провинции Ингерманландии» Э. Белинга и А. Андерсина, 1704 г., составлена по материалам 1678 г.«Географический чертёж над Ижорскою землей со своими городами» Адриана Шонбека 1705 г.Новая и достоверная всей Ингерманландии ланткарта. Грав. А. Ростовцев. СПб., 1727 г.Топографическая карта Санкт-Петербургской губернии. 5-и верстка. Шуберт. 1834 г.Описание Санкт-Петербургской губернии по уездам и станамСпецкарта западной части России Ф. Ф. Шуберта. 1844 г.Алфавитный список селений по уездам и станам С.-Петербургской губернииСписки населённых мест Российской Империи, составленные и издаваемые центральным статистическим комитетом министерства внутренних дел. XXXVII. Санкт-Петербургская губерния. По состоянию на 1862 год. СПб. 1864. С. 203Материалы по статистике народного хозяйства в С.-Петербургской губернии. Вып. IX. Частновладельческое хозяйство в Ямбургском уезде. СПб, 1888, С. 146, С. 2, 7, 54Положение о гербе муниципального образования Курское сельское поселениеСправочник истории административно-территориального деления Ленинградской области.Топографическая карта Ленинградской области, квадрат О-35-23-В (Хотыницы), 1930 г.АрхивированоАдминистративно-территориальное деление Ленинградской области. — Л., 1933, С. 27, 198АрхивированоАдминистративно-экономический справочник по Ленинградской области. — Л., 1936, с. 219АрхивированоАдминистративно-территориальное деление Ленинградской области. — Л., 1966, с. 175АрхивированоАдминистративно-территориальное деление Ленинградской области. — Лениздат, 1973, С. 180АрхивированоАдминистративно-территориальное деление Ленинградской области. — Лениздат, 1990, ISBN 5-289-00612-5, С. 38АрхивированоАдминистративно-территориальное деление Ленинградской области. — СПб., 2007, с. 60АрхивированоКоряков Юрий База данных «Этно-языковой состав населённых пунктов России». Ленинградская область.Административно-территориальное деление Ленинградской области. — СПб, 1997, ISBN 5-86153-055-6, С. 41АрхивированоКультовый комплекс Старые Смолеговицы // Электронная энциклопедия ЭрмитажаПроблемы выявления, изучения и сохранения культовых комплексов с каменными крестами: по материалам работ 2016-2017 гг. в Ленинградской области