Suppose $U_1,dots,U_k$ and $V_1,dots,V_k$ are $ntimes n$ unitary matrices. Show that $|U_1cdots U_k-V_1cdots V_k|leqsum_i=1^k|U_i-V_i|$Is there a condition for the following consequence?Orthogonal Inner Product Proofprove change of basis matrix is unitarya matrix metricMatrix of non-degenerate product invertible?Prove that there is a $uin V$, such that $<u,v_i>$ is greater than zero, for every $i in 1,..,m$.Find shortest vectors $u_1,v_1,cdots,u_N,v_N$ such that $langle u_i,v_jrangle=1$ if $ile j$ and $langle u_i,v_jrangle=0$ if $i>j$Inner product of dual basisColumn Spaces and SubsetsInduced inner product on tensor powers.

How can I track script which gives me "command not found" right after the login?

Does Mathematica reuse previous computations?

If I can solve Sudoku can I solve Travelling Salesman Problem(TSP)? If yes, how?

Is it normal that my co-workers at a fitness company criticize my food choices?

Are all passive ability checks floors for active ability checks?

What exactly is this small puffer fish doing and how did it manage to accomplish such a feat?

Welcoming 2019 Pi day: How to draw the letter π?

What options are left, if Britain cannot decide?

How to create the Curved texte?

What approach do we need to follow for projects without a test environment?

Min function accepting varying number of arguments in C++17

Why is the President allowed to veto a cancellation of emergency powers?

Why do passenger jet manufacturers design their planes with stall prevention systems?

How to read the value of this capacitor?

Who is flying the vertibirds?

Do I need to be arrogant to get ahead?

Can I use USB data pins as power source

Recruiter wants very extensive technical details about all of my previous work

Did Ender ever learn that he killed Stilson and/or Bonzo?

Is it true that good novels will automatically sell themselves on Amazon (and so on) and there is no need for one to waste time promoting?

How do anti-virus programs start at Windows boot?

The difference between「N分で」and「後N分で」

In a future war, an old lady is trying to raise a boy but one of the weapons has made everyone deaf

Professor being mistaken for a grad student



Suppose $U_1,dots,U_k$ and $V_1,dots,V_k$ are $ntimes n$ unitary matrices. Show that $|U_1cdots U_k-V_1cdots V_k|leqsum_i=1^k|U_i-V_i|$


Is there a condition for the following consequence?Orthogonal Inner Product Proofprove change of basis matrix is unitarya matrix metricMatrix of non-degenerate product invertible?Prove that there is a $uin V$, such that $<u,v_i>$ is greater than zero, for every $i in 1,..,m$.Find shortest vectors $u_1,v_1,cdots,u_N,v_N$ such that $langle u_i,v_jrangle=1$ if $ile j$ and $langle u_i,v_jrangle=0$ if $i>j$Inner product of dual basisColumn Spaces and SubsetsInduced inner product on tensor powers.













4












$begingroup$


Let $V,W$ be complex inner product spaces. Suppose $T: V to W$ is a linear map, then we define
$$|T|:=supv$$ where $|v_V|:=sqrtlangle v,vrangle$ and $|Tv|_W:=sqrtlangle Tv,Tvrangle$.



Question: Suppose $U_1,ldots,U_k$ and $V_1,ldots,V_k$ are $n times n$ unitary matrices. Show that
$$|U_1cdots U_k-V_1cdots V_k| leq sum_i=1^k|U_i-V_i|$$



I have tried to use triangle inequality for norms and induction but failed. Can anyone give some hints? Thank you!










share|cite|improve this question











$endgroup$
















    4












    $begingroup$


    Let $V,W$ be complex inner product spaces. Suppose $T: V to W$ is a linear map, then we define
    $$|T|:=supv$$ where $|v_V|:=sqrtlangle v,vrangle$ and $|Tv|_W:=sqrtlangle Tv,Tvrangle$.



    Question: Suppose $U_1,ldots,U_k$ and $V_1,ldots,V_k$ are $n times n$ unitary matrices. Show that
    $$|U_1cdots U_k-V_1cdots V_k| leq sum_i=1^k|U_i-V_i|$$



    I have tried to use triangle inequality for norms and induction but failed. Can anyone give some hints? Thank you!










    share|cite|improve this question











    $endgroup$














      4












      4








      4


      1



      $begingroup$


      Let $V,W$ be complex inner product spaces. Suppose $T: V to W$ is a linear map, then we define
      $$|T|:=supv$$ where $|v_V|:=sqrtlangle v,vrangle$ and $|Tv|_W:=sqrtlangle Tv,Tvrangle$.



      Question: Suppose $U_1,ldots,U_k$ and $V_1,ldots,V_k$ are $n times n$ unitary matrices. Show that
      $$|U_1cdots U_k-V_1cdots V_k| leq sum_i=1^k|U_i-V_i|$$



      I have tried to use triangle inequality for norms and induction but failed. Can anyone give some hints? Thank you!










      share|cite|improve this question











      $endgroup$




      Let $V,W$ be complex inner product spaces. Suppose $T: V to W$ is a linear map, then we define
      $$|T|:=supv$$ where $|v_V|:=sqrtlangle v,vrangle$ and $|Tv|_W:=sqrtlangle Tv,Tvrangle$.



      Question: Suppose $U_1,ldots,U_k$ and $V_1,ldots,V_k$ are $n times n$ unitary matrices. Show that
      $$|U_1cdots U_k-V_1cdots V_k| leq sum_i=1^k|U_i-V_i|$$



      I have tried to use triangle inequality for norms and induction but failed. Can anyone give some hints? Thank you!







      linear-algebra matrices functional-analysis norm






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 2 hours ago









      Asaf Karagila

      306k33438769




      306k33438769










      asked 5 hours ago









      bbwbbw

      52239




      52239




















          1 Answer
          1






          active

          oldest

          votes


















          7












          $begingroup$

          For $k = 1$, the inequality becomes an identity. So, start with the special case $k = 2$:
          $$
          beginarrayll
          & ||U_1 U_2 - V_1 V_2||\ \
          = & ||U_1 U_2 - V_1 U_2 + V_1 U_2 - V_1 V_2||\ \
          = &
          || ( U_1 - V_1) U_2 + V_1 (U_2 - V_2) || \ \
          leq & ||( U_1 - V_1) U_2 || + ||V_1 (U_2 - V_2) ||.\
          endarray
          $$

          (The last inequality is the triangle inequality.) Now, since $U_2$ is unitary, we have $||U_2|| = 1$, so
          $$
          || ( U_1 - V_1) U_2 || leq || U_1 - V_1 ||.
          $$

          A similar bound obtains for $||V_1 (U_2 - V_2) ||$.



          This should give you enough "building blocks".:)






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            Thank you so much!
            $endgroup$
            – bbw
            4 hours ago






          • 1




            $begingroup$
            You are welcome. I edited to remove the (unjustified) assumption that the matrices commute.:)
            $endgroup$
            – avs
            4 hours ago










          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3149889%2fsuppose-u-1-dots-u-k-and-v-1-dots-v-k-are-n-times-n-unitary-matrices-sh%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          7












          $begingroup$

          For $k = 1$, the inequality becomes an identity. So, start with the special case $k = 2$:
          $$
          beginarrayll
          & ||U_1 U_2 - V_1 V_2||\ \
          = & ||U_1 U_2 - V_1 U_2 + V_1 U_2 - V_1 V_2||\ \
          = &
          || ( U_1 - V_1) U_2 + V_1 (U_2 - V_2) || \ \
          leq & ||( U_1 - V_1) U_2 || + ||V_1 (U_2 - V_2) ||.\
          endarray
          $$

          (The last inequality is the triangle inequality.) Now, since $U_2$ is unitary, we have $||U_2|| = 1$, so
          $$
          || ( U_1 - V_1) U_2 || leq || U_1 - V_1 ||.
          $$

          A similar bound obtains for $||V_1 (U_2 - V_2) ||$.



          This should give you enough "building blocks".:)






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            Thank you so much!
            $endgroup$
            – bbw
            4 hours ago






          • 1




            $begingroup$
            You are welcome. I edited to remove the (unjustified) assumption that the matrices commute.:)
            $endgroup$
            – avs
            4 hours ago















          7












          $begingroup$

          For $k = 1$, the inequality becomes an identity. So, start with the special case $k = 2$:
          $$
          beginarrayll
          & ||U_1 U_2 - V_1 V_2||\ \
          = & ||U_1 U_2 - V_1 U_2 + V_1 U_2 - V_1 V_2||\ \
          = &
          || ( U_1 - V_1) U_2 + V_1 (U_2 - V_2) || \ \
          leq & ||( U_1 - V_1) U_2 || + ||V_1 (U_2 - V_2) ||.\
          endarray
          $$

          (The last inequality is the triangle inequality.) Now, since $U_2$ is unitary, we have $||U_2|| = 1$, so
          $$
          || ( U_1 - V_1) U_2 || leq || U_1 - V_1 ||.
          $$

          A similar bound obtains for $||V_1 (U_2 - V_2) ||$.



          This should give you enough "building blocks".:)






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            Thank you so much!
            $endgroup$
            – bbw
            4 hours ago






          • 1




            $begingroup$
            You are welcome. I edited to remove the (unjustified) assumption that the matrices commute.:)
            $endgroup$
            – avs
            4 hours ago













          7












          7








          7





          $begingroup$

          For $k = 1$, the inequality becomes an identity. So, start with the special case $k = 2$:
          $$
          beginarrayll
          & ||U_1 U_2 - V_1 V_2||\ \
          = & ||U_1 U_2 - V_1 U_2 + V_1 U_2 - V_1 V_2||\ \
          = &
          || ( U_1 - V_1) U_2 + V_1 (U_2 - V_2) || \ \
          leq & ||( U_1 - V_1) U_2 || + ||V_1 (U_2 - V_2) ||.\
          endarray
          $$

          (The last inequality is the triangle inequality.) Now, since $U_2$ is unitary, we have $||U_2|| = 1$, so
          $$
          || ( U_1 - V_1) U_2 || leq || U_1 - V_1 ||.
          $$

          A similar bound obtains for $||V_1 (U_2 - V_2) ||$.



          This should give you enough "building blocks".:)






          share|cite|improve this answer











          $endgroup$



          For $k = 1$, the inequality becomes an identity. So, start with the special case $k = 2$:
          $$
          beginarrayll
          & ||U_1 U_2 - V_1 V_2||\ \
          = & ||U_1 U_2 - V_1 U_2 + V_1 U_2 - V_1 V_2||\ \
          = &
          || ( U_1 - V_1) U_2 + V_1 (U_2 - V_2) || \ \
          leq & ||( U_1 - V_1) U_2 || + ||V_1 (U_2 - V_2) ||.\
          endarray
          $$

          (The last inequality is the triangle inequality.) Now, since $U_2$ is unitary, we have $||U_2|| = 1$, so
          $$
          || ( U_1 - V_1) U_2 || leq || U_1 - V_1 ||.
          $$

          A similar bound obtains for $||V_1 (U_2 - V_2) ||$.



          This should give you enough "building blocks".:)







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 4 hours ago

























          answered 5 hours ago









          avsavs

          3,434513




          3,434513











          • $begingroup$
            Thank you so much!
            $endgroup$
            – bbw
            4 hours ago






          • 1




            $begingroup$
            You are welcome. I edited to remove the (unjustified) assumption that the matrices commute.:)
            $endgroup$
            – avs
            4 hours ago
















          • $begingroup$
            Thank you so much!
            $endgroup$
            – bbw
            4 hours ago






          • 1




            $begingroup$
            You are welcome. I edited to remove the (unjustified) assumption that the matrices commute.:)
            $endgroup$
            – avs
            4 hours ago















          $begingroup$
          Thank you so much!
          $endgroup$
          – bbw
          4 hours ago




          $begingroup$
          Thank you so much!
          $endgroup$
          – bbw
          4 hours ago




          1




          1




          $begingroup$
          You are welcome. I edited to remove the (unjustified) assumption that the matrices commute.:)
          $endgroup$
          – avs
          4 hours ago




          $begingroup$
          You are welcome. I edited to remove the (unjustified) assumption that the matrices commute.:)
          $endgroup$
          – avs
          4 hours ago

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3149889%2fsuppose-u-1-dots-u-k-and-v-1-dots-v-k-are-n-times-n-unitary-matrices-sh%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Masuk log Menu navigasi

          Identifying “long and narrow” polygons in with PostGISlength and width of polygonWhy postgis st_overlaps reports Qgis' “avoid intersections” generated polygon as overlapping with others?Adjusting polygons to boundary and filling holesDrawing polygons with fixed area?How to remove spikes in Polygons with PostGISDeleting sliver polygons after difference operation in QGIS?Snapping boundaries in PostGISSplit polygon into parts adding attributes based on underlying polygon in QGISSplitting overlap between polygons and assign to nearest polygon using PostGIS?Expanding polygons and clipping at midpoint?Removing Intersection of Buffers in Same Layers

          Старые Смолеговицы Содержание История | География | Демография | Достопримечательности | Примечания | НавигацияHGЯOLHGЯOL41 206 832 01641 606 406 141Административно-территориальное деление Ленинградской области«Переписная оброчная книга Водской пятины 1500 года», С. 793«Карта Ингерманландии: Ивангорода, Яма, Копорья, Нотеборга», по материалам 1676 г.«Генеральная карта провинции Ингерманландии» Э. Белинга и А. Андерсина, 1704 г., составлена по материалам 1678 г.«Географический чертёж над Ижорскою землей со своими городами» Адриана Шонбека 1705 г.Новая и достоверная всей Ингерманландии ланткарта. Грав. А. Ростовцев. СПб., 1727 г.Топографическая карта Санкт-Петербургской губернии. 5-и верстка. Шуберт. 1834 г.Описание Санкт-Петербургской губернии по уездам и станамСпецкарта западной части России Ф. Ф. Шуберта. 1844 г.Алфавитный список селений по уездам и станам С.-Петербургской губернииСписки населённых мест Российской Империи, составленные и издаваемые центральным статистическим комитетом министерства внутренних дел. XXXVII. Санкт-Петербургская губерния. По состоянию на 1862 год. СПб. 1864. С. 203Материалы по статистике народного хозяйства в С.-Петербургской губернии. Вып. IX. Частновладельческое хозяйство в Ямбургском уезде. СПб, 1888, С. 146, С. 2, 7, 54Положение о гербе муниципального образования Курское сельское поселениеСправочник истории административно-территориального деления Ленинградской области.Топографическая карта Ленинградской области, квадрат О-35-23-В (Хотыницы), 1930 г.АрхивированоАдминистративно-территориальное деление Ленинградской области. — Л., 1933, С. 27, 198АрхивированоАдминистративно-экономический справочник по Ленинградской области. — Л., 1936, с. 219АрхивированоАдминистративно-территориальное деление Ленинградской области. — Л., 1966, с. 175АрхивированоАдминистративно-территориальное деление Ленинградской области. — Лениздат, 1973, С. 180АрхивированоАдминистративно-территориальное деление Ленинградской области. — Лениздат, 1990, ISBN 5-289-00612-5, С. 38АрхивированоАдминистративно-территориальное деление Ленинградской области. — СПб., 2007, с. 60АрхивированоКоряков Юрий База данных «Этно-языковой состав населённых пунктов России». Ленинградская область.Административно-территориальное деление Ленинградской области. — СПб, 1997, ISBN 5-86153-055-6, С. 41АрхивированоКультовый комплекс Старые Смолеговицы // Электронная энциклопедия ЭрмитажаПроблемы выявления, изучения и сохранения культовых комплексов с каменными крестами: по материалам работ 2016-2017 гг. в Ленинградской области