Determinant is linear as a function of each of the rows of the matrix.












3












$begingroup$


Today I heard in a lecture (some video on YouTube) that the determinant is linear as a function of each of the rows of the matrix.



I am not able to understand the above statement. I know that determinant is a special function which assign to each $x$ in $mathbb K^{n times n}$ a scalar. This is the intuitive idea. And this map is not linear as well. One way to see this is to consider the fact that determinant of $cA$ is $c^ndet(A)$



Can someone please explain what did the person mean by saying that the determinant is linear as a function of each of the rows of matrix?










share|cite|improve this question











$endgroup$












  • $begingroup$
    I got it. It means that elementary row operations have a linear effect on determinant. Say $A=(r1,r2,...,r_n)$ is a matrix then det of $(r_1,..,cr_j +r_i,..,r_n)$ is nothing but determinant of $(r_1,..,cr_j,..,r_n)$ plus determinant of $(r_1,..,r_i,..,r_n)$.Am I right?
    $endgroup$
    – StammeringMathematician
    2 hours ago










  • $begingroup$
    Yes. The fact that is is linear in each row separately gives rise to the combinatorial formula for the determinant.
    $endgroup$
    – copper.hat
    2 hours ago


















3












$begingroup$


Today I heard in a lecture (some video on YouTube) that the determinant is linear as a function of each of the rows of the matrix.



I am not able to understand the above statement. I know that determinant is a special function which assign to each $x$ in $mathbb K^{n times n}$ a scalar. This is the intuitive idea. And this map is not linear as well. One way to see this is to consider the fact that determinant of $cA$ is $c^ndet(A)$



Can someone please explain what did the person mean by saying that the determinant is linear as a function of each of the rows of matrix?










share|cite|improve this question











$endgroup$












  • $begingroup$
    I got it. It means that elementary row operations have a linear effect on determinant. Say $A=(r1,r2,...,r_n)$ is a matrix then det of $(r_1,..,cr_j +r_i,..,r_n)$ is nothing but determinant of $(r_1,..,cr_j,..,r_n)$ plus determinant of $(r_1,..,r_i,..,r_n)$.Am I right?
    $endgroup$
    – StammeringMathematician
    2 hours ago










  • $begingroup$
    Yes. The fact that is is linear in each row separately gives rise to the combinatorial formula for the determinant.
    $endgroup$
    – copper.hat
    2 hours ago
















3












3








3





$begingroup$


Today I heard in a lecture (some video on YouTube) that the determinant is linear as a function of each of the rows of the matrix.



I am not able to understand the above statement. I know that determinant is a special function which assign to each $x$ in $mathbb K^{n times n}$ a scalar. This is the intuitive idea. And this map is not linear as well. One way to see this is to consider the fact that determinant of $cA$ is $c^ndet(A)$



Can someone please explain what did the person mean by saying that the determinant is linear as a function of each of the rows of matrix?










share|cite|improve this question











$endgroup$




Today I heard in a lecture (some video on YouTube) that the determinant is linear as a function of each of the rows of the matrix.



I am not able to understand the above statement. I know that determinant is a special function which assign to each $x$ in $mathbb K^{n times n}$ a scalar. This is the intuitive idea. And this map is not linear as well. One way to see this is to consider the fact that determinant of $cA$ is $c^ndet(A)$



Can someone please explain what did the person mean by saying that the determinant is linear as a function of each of the rows of matrix?







linear-algebra matrices determinant






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 3 hours ago









Rodrigo de Azevedo

13.2k41961




13.2k41961










asked 3 hours ago









StammeringMathematicianStammeringMathematician

2,8171324




2,8171324












  • $begingroup$
    I got it. It means that elementary row operations have a linear effect on determinant. Say $A=(r1,r2,...,r_n)$ is a matrix then det of $(r_1,..,cr_j +r_i,..,r_n)$ is nothing but determinant of $(r_1,..,cr_j,..,r_n)$ plus determinant of $(r_1,..,r_i,..,r_n)$.Am I right?
    $endgroup$
    – StammeringMathematician
    2 hours ago










  • $begingroup$
    Yes. The fact that is is linear in each row separately gives rise to the combinatorial formula for the determinant.
    $endgroup$
    – copper.hat
    2 hours ago




















  • $begingroup$
    I got it. It means that elementary row operations have a linear effect on determinant. Say $A=(r1,r2,...,r_n)$ is a matrix then det of $(r_1,..,cr_j +r_i,..,r_n)$ is nothing but determinant of $(r_1,..,cr_j,..,r_n)$ plus determinant of $(r_1,..,r_i,..,r_n)$.Am I right?
    $endgroup$
    – StammeringMathematician
    2 hours ago










  • $begingroup$
    Yes. The fact that is is linear in each row separately gives rise to the combinatorial formula for the determinant.
    $endgroup$
    – copper.hat
    2 hours ago


















$begingroup$
I got it. It means that elementary row operations have a linear effect on determinant. Say $A=(r1,r2,...,r_n)$ is a matrix then det of $(r_1,..,cr_j +r_i,..,r_n)$ is nothing but determinant of $(r_1,..,cr_j,..,r_n)$ plus determinant of $(r_1,..,r_i,..,r_n)$.Am I right?
$endgroup$
– StammeringMathematician
2 hours ago




$begingroup$
I got it. It means that elementary row operations have a linear effect on determinant. Say $A=(r1,r2,...,r_n)$ is a matrix then det of $(r_1,..,cr_j +r_i,..,r_n)$ is nothing but determinant of $(r_1,..,cr_j,..,r_n)$ plus determinant of $(r_1,..,r_i,..,r_n)$.Am I right?
$endgroup$
– StammeringMathematician
2 hours ago












$begingroup$
Yes. The fact that is is linear in each row separately gives rise to the combinatorial formula for the determinant.
$endgroup$
– copper.hat
2 hours ago






$begingroup$
Yes. The fact that is is linear in each row separately gives rise to the combinatorial formula for the determinant.
$endgroup$
– copper.hat
2 hours ago












2 Answers
2






active

oldest

votes


















4












$begingroup$

If $r_1, ldots r_n$ are the rows of the matrix and $r_i = sa+tb$, where $s,t$ are scalars and $a,b$ are row vectors, then you have



$$detbegin{pmatrix}r_1 \ vdots \r_i \ vdots \ r_nend{pmatrix} = detbegin{pmatrix}r_1 \ vdots \ sa+tb \ vdots \ r_nend{pmatrix} = sdetbegin{pmatrix}r_1 \ vdots \ a \ vdots \ r_nend{pmatrix} + tdetbegin{pmatrix}r_1 \ vdots \ b \ vdots \ r_nend{pmatrix}$$



This holds for any row $i=1,ldots , n$. And similarly this also applies to columns.






share|cite|improve this answer









$endgroup$





















    3












    $begingroup$

    Let $M$ be an $ntimes n$ matrix with rows $mathbf{r}_1,dots,mathbf{r}_n$. Then we may think of the determinant as a function of the rows
    $$
    det(M)=det(mathbf{r}_1,dots,mathbf{r}_n).
    $$

    To say that $det$ is a linear function of the rows means that if we scale a single row by $c$, the result is scaled by $c$; that is,
    $$
    det(mathbf{r}_1,dots,mathbf{r}_{i-1},cmathbf{r}_i,mathbf{r}_{i+1}dotsmathbf{r}_n)=cdet(mathbf{r}_1,dots,mathbf{r}_n).
    $$

    Similarly if we fix all but one row (say the first), we obtain
    $$
    det(mathbf{x}+mathbf{r}_1,mathbf{r}_2,dots,mathbf{r}_n)=det(mathbf{x},dots,mathbf{r}_n)+det(mathbf{r}_1,dots,mathbf{r}_n).
    $$

    Your mistake was that you scale all the rows at once; to be linear, you can only do things "one at a time"






    share|cite|improve this answer









    $endgroup$














      Your Answer








      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3189406%2fdeterminant-is-linear-as-a-function-of-each-of-the-rows-of-the-matrix%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      4












      $begingroup$

      If $r_1, ldots r_n$ are the rows of the matrix and $r_i = sa+tb$, where $s,t$ are scalars and $a,b$ are row vectors, then you have



      $$detbegin{pmatrix}r_1 \ vdots \r_i \ vdots \ r_nend{pmatrix} = detbegin{pmatrix}r_1 \ vdots \ sa+tb \ vdots \ r_nend{pmatrix} = sdetbegin{pmatrix}r_1 \ vdots \ a \ vdots \ r_nend{pmatrix} + tdetbegin{pmatrix}r_1 \ vdots \ b \ vdots \ r_nend{pmatrix}$$



      This holds for any row $i=1,ldots , n$. And similarly this also applies to columns.






      share|cite|improve this answer









      $endgroup$


















        4












        $begingroup$

        If $r_1, ldots r_n$ are the rows of the matrix and $r_i = sa+tb$, where $s,t$ are scalars and $a,b$ are row vectors, then you have



        $$detbegin{pmatrix}r_1 \ vdots \r_i \ vdots \ r_nend{pmatrix} = detbegin{pmatrix}r_1 \ vdots \ sa+tb \ vdots \ r_nend{pmatrix} = sdetbegin{pmatrix}r_1 \ vdots \ a \ vdots \ r_nend{pmatrix} + tdetbegin{pmatrix}r_1 \ vdots \ b \ vdots \ r_nend{pmatrix}$$



        This holds for any row $i=1,ldots , n$. And similarly this also applies to columns.






        share|cite|improve this answer









        $endgroup$
















          4












          4








          4





          $begingroup$

          If $r_1, ldots r_n$ are the rows of the matrix and $r_i = sa+tb$, where $s,t$ are scalars and $a,b$ are row vectors, then you have



          $$detbegin{pmatrix}r_1 \ vdots \r_i \ vdots \ r_nend{pmatrix} = detbegin{pmatrix}r_1 \ vdots \ sa+tb \ vdots \ r_nend{pmatrix} = sdetbegin{pmatrix}r_1 \ vdots \ a \ vdots \ r_nend{pmatrix} + tdetbegin{pmatrix}r_1 \ vdots \ b \ vdots \ r_nend{pmatrix}$$



          This holds for any row $i=1,ldots , n$. And similarly this also applies to columns.






          share|cite|improve this answer









          $endgroup$



          If $r_1, ldots r_n$ are the rows of the matrix and $r_i = sa+tb$, where $s,t$ are scalars and $a,b$ are row vectors, then you have



          $$detbegin{pmatrix}r_1 \ vdots \r_i \ vdots \ r_nend{pmatrix} = detbegin{pmatrix}r_1 \ vdots \ sa+tb \ vdots \ r_nend{pmatrix} = sdetbegin{pmatrix}r_1 \ vdots \ a \ vdots \ r_nend{pmatrix} + tdetbegin{pmatrix}r_1 \ vdots \ b \ vdots \ r_nend{pmatrix}$$



          This holds for any row $i=1,ldots , n$. And similarly this also applies to columns.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 2 hours ago









          trancelocationtrancelocation

          14.2k1829




          14.2k1829























              3












              $begingroup$

              Let $M$ be an $ntimes n$ matrix with rows $mathbf{r}_1,dots,mathbf{r}_n$. Then we may think of the determinant as a function of the rows
              $$
              det(M)=det(mathbf{r}_1,dots,mathbf{r}_n).
              $$

              To say that $det$ is a linear function of the rows means that if we scale a single row by $c$, the result is scaled by $c$; that is,
              $$
              det(mathbf{r}_1,dots,mathbf{r}_{i-1},cmathbf{r}_i,mathbf{r}_{i+1}dotsmathbf{r}_n)=cdet(mathbf{r}_1,dots,mathbf{r}_n).
              $$

              Similarly if we fix all but one row (say the first), we obtain
              $$
              det(mathbf{x}+mathbf{r}_1,mathbf{r}_2,dots,mathbf{r}_n)=det(mathbf{x},dots,mathbf{r}_n)+det(mathbf{r}_1,dots,mathbf{r}_n).
              $$

              Your mistake was that you scale all the rows at once; to be linear, you can only do things "one at a time"






              share|cite|improve this answer









              $endgroup$


















                3












                $begingroup$

                Let $M$ be an $ntimes n$ matrix with rows $mathbf{r}_1,dots,mathbf{r}_n$. Then we may think of the determinant as a function of the rows
                $$
                det(M)=det(mathbf{r}_1,dots,mathbf{r}_n).
                $$

                To say that $det$ is a linear function of the rows means that if we scale a single row by $c$, the result is scaled by $c$; that is,
                $$
                det(mathbf{r}_1,dots,mathbf{r}_{i-1},cmathbf{r}_i,mathbf{r}_{i+1}dotsmathbf{r}_n)=cdet(mathbf{r}_1,dots,mathbf{r}_n).
                $$

                Similarly if we fix all but one row (say the first), we obtain
                $$
                det(mathbf{x}+mathbf{r}_1,mathbf{r}_2,dots,mathbf{r}_n)=det(mathbf{x},dots,mathbf{r}_n)+det(mathbf{r}_1,dots,mathbf{r}_n).
                $$

                Your mistake was that you scale all the rows at once; to be linear, you can only do things "one at a time"






                share|cite|improve this answer









                $endgroup$
















                  3












                  3








                  3





                  $begingroup$

                  Let $M$ be an $ntimes n$ matrix with rows $mathbf{r}_1,dots,mathbf{r}_n$. Then we may think of the determinant as a function of the rows
                  $$
                  det(M)=det(mathbf{r}_1,dots,mathbf{r}_n).
                  $$

                  To say that $det$ is a linear function of the rows means that if we scale a single row by $c$, the result is scaled by $c$; that is,
                  $$
                  det(mathbf{r}_1,dots,mathbf{r}_{i-1},cmathbf{r}_i,mathbf{r}_{i+1}dotsmathbf{r}_n)=cdet(mathbf{r}_1,dots,mathbf{r}_n).
                  $$

                  Similarly if we fix all but one row (say the first), we obtain
                  $$
                  det(mathbf{x}+mathbf{r}_1,mathbf{r}_2,dots,mathbf{r}_n)=det(mathbf{x},dots,mathbf{r}_n)+det(mathbf{r}_1,dots,mathbf{r}_n).
                  $$

                  Your mistake was that you scale all the rows at once; to be linear, you can only do things "one at a time"






                  share|cite|improve this answer









                  $endgroup$



                  Let $M$ be an $ntimes n$ matrix with rows $mathbf{r}_1,dots,mathbf{r}_n$. Then we may think of the determinant as a function of the rows
                  $$
                  det(M)=det(mathbf{r}_1,dots,mathbf{r}_n).
                  $$

                  To say that $det$ is a linear function of the rows means that if we scale a single row by $c$, the result is scaled by $c$; that is,
                  $$
                  det(mathbf{r}_1,dots,mathbf{r}_{i-1},cmathbf{r}_i,mathbf{r}_{i+1}dotsmathbf{r}_n)=cdet(mathbf{r}_1,dots,mathbf{r}_n).
                  $$

                  Similarly if we fix all but one row (say the first), we obtain
                  $$
                  det(mathbf{x}+mathbf{r}_1,mathbf{r}_2,dots,mathbf{r}_n)=det(mathbf{x},dots,mathbf{r}_n)+det(mathbf{r}_1,dots,mathbf{r}_n).
                  $$

                  Your mistake was that you scale all the rows at once; to be linear, you can only do things "one at a time"







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 2 hours ago









                  TomGrubbTomGrubb

                  11.2k11639




                  11.2k11639






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3189406%2fdeterminant-is-linear-as-a-function-of-each-of-the-rows-of-the-matrix%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Masuk log Menu navigasi

                      Identifying “long and narrow” polygons in with PostGISlength and width of polygonWhy postgis st_overlaps reports Qgis' “avoid intersections” generated polygon as overlapping with others?Adjusting polygons to boundary and filling holesDrawing polygons with fixed area?How to remove spikes in Polygons with PostGISDeleting sliver polygons after difference operation in QGIS?Snapping boundaries in PostGISSplit polygon into parts adding attributes based on underlying polygon in QGISSplitting overlap between polygons and assign to nearest polygon using PostGIS?Expanding polygons and clipping at midpoint?Removing Intersection of Buffers in Same Layers

                      Старые Смолеговицы Содержание История | География | Демография | Достопримечательности | Примечания | НавигацияHGЯOLHGЯOL41 206 832 01641 606 406 141Административно-территориальное деление Ленинградской области«Переписная оброчная книга Водской пятины 1500 года», С. 793«Карта Ингерманландии: Ивангорода, Яма, Копорья, Нотеборга», по материалам 1676 г.«Генеральная карта провинции Ингерманландии» Э. Белинга и А. Андерсина, 1704 г., составлена по материалам 1678 г.«Географический чертёж над Ижорскою землей со своими городами» Адриана Шонбека 1705 г.Новая и достоверная всей Ингерманландии ланткарта. Грав. А. Ростовцев. СПб., 1727 г.Топографическая карта Санкт-Петербургской губернии. 5-и верстка. Шуберт. 1834 г.Описание Санкт-Петербургской губернии по уездам и станамСпецкарта западной части России Ф. Ф. Шуберта. 1844 г.Алфавитный список селений по уездам и станам С.-Петербургской губернииСписки населённых мест Российской Империи, составленные и издаваемые центральным статистическим комитетом министерства внутренних дел. XXXVII. Санкт-Петербургская губерния. По состоянию на 1862 год. СПб. 1864. С. 203Материалы по статистике народного хозяйства в С.-Петербургской губернии. Вып. IX. Частновладельческое хозяйство в Ямбургском уезде. СПб, 1888, С. 146, С. 2, 7, 54Положение о гербе муниципального образования Курское сельское поселениеСправочник истории административно-территориального деления Ленинградской области.Топографическая карта Ленинградской области, квадрат О-35-23-В (Хотыницы), 1930 г.АрхивированоАдминистративно-территориальное деление Ленинградской области. — Л., 1933, С. 27, 198АрхивированоАдминистративно-экономический справочник по Ленинградской области. — Л., 1936, с. 219АрхивированоАдминистративно-территориальное деление Ленинградской области. — Л., 1966, с. 175АрхивированоАдминистративно-территориальное деление Ленинградской области. — Лениздат, 1973, С. 180АрхивированоАдминистративно-территориальное деление Ленинградской области. — Лениздат, 1990, ISBN 5-289-00612-5, С. 38АрхивированоАдминистративно-территориальное деление Ленинградской области. — СПб., 2007, с. 60АрхивированоКоряков Юрий База данных «Этно-языковой состав населённых пунктов России». Ленинградская область.Административно-территориальное деление Ленинградской области. — СПб, 1997, ISBN 5-86153-055-6, С. 41АрхивированоКультовый комплекс Старые Смолеговицы // Электронная энциклопедия ЭрмитажаПроблемы выявления, изучения и сохранения культовых комплексов с каменными крестами: по материалам работ 2016-2017 гг. в Ленинградской области