Practical application of matrices and determinants












5












$begingroup$


I have learned recently about matrices and determinants and also about the geometrical interpretations, i.e, how the matrix is used for linear transformations and how determinants tell us about area/volume changes.



My school textbooks tell me that matrices and determinants can be used to solve a system of equations, but I feel that such a vast concept would have more practical applications. My question is: what are the various ways the concept of matrices and determinants is employed in science or everyday life?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Matrices are used a lot in machine learning.
    $endgroup$
    – Bladewood
    Mar 17 at 19:00






  • 6




    $begingroup$
    With some exaggeration, all of applied mathematics boils down to solving systems of linear equations.
    $endgroup$
    – Rodrigo de Azevedo
    Mar 17 at 19:19






  • 4




    $begingroup$
    Solving systems of equations is extremely practical. Every time someone solves a differential equation using the finite element method, or runs a linear regression, or solves an optimization problem using Newton's method, a system of linear equations is solved. There is hardly any engineering or applied math project that doesn't require solving a system of linear equations.
    $endgroup$
    – Sasho Nikolov
    Mar 17 at 19:37










  • $begingroup$
    Matrices are important to computer graphics, but not determinants.
    $endgroup$
    – immibis
    Mar 17 at 22:47










  • $begingroup$
    See this intuitive motivation for matrices.
    $endgroup$
    – user21820
    Mar 18 at 7:51
















5












$begingroup$


I have learned recently about matrices and determinants and also about the geometrical interpretations, i.e, how the matrix is used for linear transformations and how determinants tell us about area/volume changes.



My school textbooks tell me that matrices and determinants can be used to solve a system of equations, but I feel that such a vast concept would have more practical applications. My question is: what are the various ways the concept of matrices and determinants is employed in science or everyday life?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Matrices are used a lot in machine learning.
    $endgroup$
    – Bladewood
    Mar 17 at 19:00






  • 6




    $begingroup$
    With some exaggeration, all of applied mathematics boils down to solving systems of linear equations.
    $endgroup$
    – Rodrigo de Azevedo
    Mar 17 at 19:19






  • 4




    $begingroup$
    Solving systems of equations is extremely practical. Every time someone solves a differential equation using the finite element method, or runs a linear regression, or solves an optimization problem using Newton's method, a system of linear equations is solved. There is hardly any engineering or applied math project that doesn't require solving a system of linear equations.
    $endgroup$
    – Sasho Nikolov
    Mar 17 at 19:37










  • $begingroup$
    Matrices are important to computer graphics, but not determinants.
    $endgroup$
    – immibis
    Mar 17 at 22:47










  • $begingroup$
    See this intuitive motivation for matrices.
    $endgroup$
    – user21820
    Mar 18 at 7:51














5












5








5


1



$begingroup$


I have learned recently about matrices and determinants and also about the geometrical interpretations, i.e, how the matrix is used for linear transformations and how determinants tell us about area/volume changes.



My school textbooks tell me that matrices and determinants can be used to solve a system of equations, but I feel that such a vast concept would have more practical applications. My question is: what are the various ways the concept of matrices and determinants is employed in science or everyday life?










share|cite|improve this question











$endgroup$




I have learned recently about matrices and determinants and also about the geometrical interpretations, i.e, how the matrix is used for linear transformations and how determinants tell us about area/volume changes.



My school textbooks tell me that matrices and determinants can be used to solve a system of equations, but I feel that such a vast concept would have more practical applications. My question is: what are the various ways the concept of matrices and determinants is employed in science or everyday life?







matrices soft-question determinant applications






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 18 at 8:44









YuiTo Cheng

2,1212837




2,1212837










asked Mar 17 at 14:57









Vaishakh Sreekanth MenonVaishakh Sreekanth Menon

292




292








  • 1




    $begingroup$
    Matrices are used a lot in machine learning.
    $endgroup$
    – Bladewood
    Mar 17 at 19:00






  • 6




    $begingroup$
    With some exaggeration, all of applied mathematics boils down to solving systems of linear equations.
    $endgroup$
    – Rodrigo de Azevedo
    Mar 17 at 19:19






  • 4




    $begingroup$
    Solving systems of equations is extremely practical. Every time someone solves a differential equation using the finite element method, or runs a linear regression, or solves an optimization problem using Newton's method, a system of linear equations is solved. There is hardly any engineering or applied math project that doesn't require solving a system of linear equations.
    $endgroup$
    – Sasho Nikolov
    Mar 17 at 19:37










  • $begingroup$
    Matrices are important to computer graphics, but not determinants.
    $endgroup$
    – immibis
    Mar 17 at 22:47










  • $begingroup$
    See this intuitive motivation for matrices.
    $endgroup$
    – user21820
    Mar 18 at 7:51














  • 1




    $begingroup$
    Matrices are used a lot in machine learning.
    $endgroup$
    – Bladewood
    Mar 17 at 19:00






  • 6




    $begingroup$
    With some exaggeration, all of applied mathematics boils down to solving systems of linear equations.
    $endgroup$
    – Rodrigo de Azevedo
    Mar 17 at 19:19






  • 4




    $begingroup$
    Solving systems of equations is extremely practical. Every time someone solves a differential equation using the finite element method, or runs a linear regression, or solves an optimization problem using Newton's method, a system of linear equations is solved. There is hardly any engineering or applied math project that doesn't require solving a system of linear equations.
    $endgroup$
    – Sasho Nikolov
    Mar 17 at 19:37










  • $begingroup$
    Matrices are important to computer graphics, but not determinants.
    $endgroup$
    – immibis
    Mar 17 at 22:47










  • $begingroup$
    See this intuitive motivation for matrices.
    $endgroup$
    – user21820
    Mar 18 at 7:51








1




1




$begingroup$
Matrices are used a lot in machine learning.
$endgroup$
– Bladewood
Mar 17 at 19:00




$begingroup$
Matrices are used a lot in machine learning.
$endgroup$
– Bladewood
Mar 17 at 19:00




6




6




$begingroup$
With some exaggeration, all of applied mathematics boils down to solving systems of linear equations.
$endgroup$
– Rodrigo de Azevedo
Mar 17 at 19:19




$begingroup$
With some exaggeration, all of applied mathematics boils down to solving systems of linear equations.
$endgroup$
– Rodrigo de Azevedo
Mar 17 at 19:19




4




4




$begingroup$
Solving systems of equations is extremely practical. Every time someone solves a differential equation using the finite element method, or runs a linear regression, or solves an optimization problem using Newton's method, a system of linear equations is solved. There is hardly any engineering or applied math project that doesn't require solving a system of linear equations.
$endgroup$
– Sasho Nikolov
Mar 17 at 19:37




$begingroup$
Solving systems of equations is extremely practical. Every time someone solves a differential equation using the finite element method, or runs a linear regression, or solves an optimization problem using Newton's method, a system of linear equations is solved. There is hardly any engineering or applied math project that doesn't require solving a system of linear equations.
$endgroup$
– Sasho Nikolov
Mar 17 at 19:37












$begingroup$
Matrices are important to computer graphics, but not determinants.
$endgroup$
– immibis
Mar 17 at 22:47




$begingroup$
Matrices are important to computer graphics, but not determinants.
$endgroup$
– immibis
Mar 17 at 22:47












$begingroup$
See this intuitive motivation for matrices.
$endgroup$
– user21820
Mar 18 at 7:51




$begingroup$
See this intuitive motivation for matrices.
$endgroup$
– user21820
Mar 18 at 7:51










8 Answers
8






active

oldest

votes


















7












$begingroup$

My first brief understanding of matrices is that they offer an elegant way to deal with data (combinatorially, sort of). A classical and really concrete example would be a discrete Markov chain (don't be frightened by its name). Say you are given the following information: if today is rainy, then tomorrow has a 0.9 probability to be rainy; if today is sunny, then tomorrow has a 0.5 probability to be rainy. Then you may organize these data into a matrix:



$$A=begin{pmatrix}
0.9 & 0.5 \
0.1 & 0.5
end{pmatrix}$$



Now if you compute $A^2=begin{pmatrix}
0.86 & 0.7 \
0.14 & 0.3
end{pmatrix}$
, what do you get? 0.86 is the probability that if today is rainy then the day after tomorrow is still rainy and 0.7 is the probability that if today is sunny then the day after tomorrow is rainy. And this pattern holds for $A^n$ an arbitrary $n$.



That's the simple point: matrices are a way to calculate elegantly. In my understanding, this aligns with the spirit of mathematics. Math occurs when people try to solve practical problems. People find that if they make good definitions and use good notations, things will be a lot easier. Here comes math. And the matrix is such a good notation to make things easier.






share|cite|improve this answer









$endgroup$





















    5












    $begingroup$

    Matrices are used widely in computer graphics. If you have the coordinates of an object in 3d space, then scaling, stretching and rotating the object can all be done by considering the coordinates to be vectors and multiplying them by the appropriate matrix. When you want to display that object on-screen, the projection down to a 2D object is also a matrix multiplication.






    share|cite|improve this answer









    $endgroup$





















      5












      $begingroup$

      Determinants are of great theoretical significance in mathematics, since in general "the determinant of something $= 0$" means something very special is going on, which may be either good news of bad news depending on the situation.



      On the other hand determinants have very little practical use in numerical calculations, since evaluating a determinant of order $n$ "from first principles" involves $n!$ operations, which is prohibitively expensive unless $n$ is very small. Even Cramer's rule, which is often taught in an introductory course on determinants and matrices, is not the cheapest way to solve $n$ linear equations in $n$ variables numerically if $n>2$, which is a pretty serious limitation!



      Also, if the typical magnitude of each term in a matrix of of order $n$ is $a$, the determinant is likely to be of magnitude $a^n$, and for large $n$ (say $n > 1000$) that number will usually be too large or too small to do efficient computer calculations, unless $|a|$ is very close to $1$.



      On the other hand, almost every type of numerical calculation involves the same techniques that are used to solve equations, so the practical applications of matrices are more or less "the whole of applied mathematics, science, and engineering". Most applications involve systems of equations that are much too big to create and solve by hand, so it is hard to give realistic simple examples. In real-world numerical applications, a set of $n$ linear equations in $n$ variables would still be "small" from a practical point of view if $n = 100,000,$ and even $n = 1,000,000$ is not usually big enough to cause any real problems - the solution would only take a few seconds on a typical personal computer.






      share|cite|improve this answer









      $endgroup$













      • $begingroup$
        Why "even Cramer's rule"? That rule is so obviously inefficient that it's hardly worth mentioning, as every introductory course covers Gaussian elimination, which is clearly much more efficient.
        $endgroup$
        – Servaes
        Mar 17 at 20:19










      • $begingroup$
        Whilst it doesn't make it more efficient, the determinant calculations in Cramer's rule can be done using Gaussian elimination which means its at least in the same complexity class surely?
        $endgroup$
        – jacob1729
        Mar 17 at 23:10



















      3












      $begingroup$

      Here's an application in calculus. The multivariate generalisation of integration by substitution viz. $x=f(y)implies dx=f^prime(y)dy$ uses the determinant of a matrix called a Jacobian in place of the $f^prime$ factor. In particular, the chain rule $dx_i=sum_j J_{ij}dy_j,,J_{ij}:=frac{partial x_i}{partial y_j}$ for $n$-dimensional vectors $vec{x},,vec{y}$ can be summarised as $dvec{x}=Jdvec{y}$. Then $d^nvec{x}=|det J|d^nvec{y}$.






      share|cite|improve this answer









      $endgroup$





















        3












        $begingroup$

        There are plenty of applications of determinants, but I will just mention one that applies to optimization. A totally unimodular matrix is a matrix (doesn’t have to be square) that every square submatrix has a determinant of 0, 1 or -1. It turns out that (by Cramer’s rule) that if a constraint matrix $A$ of a linear program max ${c’x:: Ax leq b, x in mathbb{R}^n_+} $ is totally unimodular, it is guaranteed to have an integer solution if a solution exists. In other words, the polyhedron formed by $P = {x:: Ax leq b}$ has integer vertices in $mathbb{R}^n$. This has major implications in integer programming, as we solve an integer program that has a totally unimodular matrix as a linear program. This is advantageous because a linear program can me solved in polynomial time, where there is no polynomial algorithm for integer programs.






        share|cite|improve this answer









        $endgroup$





















          3












          $begingroup$

          Besides the applications already mentioned in the previous answers, just consider that matrices are the fundamental basis for Finite Elements design, today widely used in every sector of engineering.



          Actually a truss is a physical representation of a matrix: if its stiffness matrix has null determinant, it means that there can be movements without external forces, i.e. the truss will collapse.



          Also, in the continuous analysis of the deformation of bodies, stress and strain each are represented by matrices (tensors).



          The inertia of a body to rotation is a matrix.



          An electric network is described by a matrix voltages/ currents, and a null determinant denotes a short somewhere.



          And so on ...






          share|cite|improve this answer











          $endgroup$





















            2












            $begingroup$

            If the determinant of a matrix is zero, then there are no solutions to a set of equations represented by an nXn matrix set equal to a 1Xn matrix. If it is non-zero, then there are solutions and they can all be found using Cramer's Rule. They are also used in Photoshop for various visual tricks; they are used to cast 3D shapes onto a 2D surface; they are used to analyze seismic waves... and a hundred other applications where data need to be crunched in a simple manner.






            share|cite|improve this answer









            $endgroup$





















              0












              $begingroup$

              In system-theory,




              1. systems can be represented by matrices and each column represent the internal-state of the system.

              2. If a determinant of one such matrix is zero, then we can say that one of the state associated with certain dynamics is being duplicated.

              3. Based on some special matrix operations, we arrive at something called as relative-gain-array (RGA). This will give information on how much each states/output of a system interactes with each other, collectively speaking.


              However, top are just a few examples. There are much more.






              share|cite|improve this answer









              $endgroup$













                Your Answer





                StackExchange.ifUsing("editor", function () {
                return StackExchange.using("mathjaxEditing", function () {
                StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                });
                });
                }, "mathjax-editing");

                StackExchange.ready(function() {
                var channelOptions = {
                tags: "".split(" "),
                id: "69"
                };
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function() {
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled) {
                StackExchange.using("snippets", function() {
                createEditor();
                });
                }
                else {
                createEditor();
                }
                });

                function createEditor() {
                StackExchange.prepareEditor({
                heartbeatType: 'answer',
                autoActivateHeartbeat: false,
                convertImagesToLinks: true,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                imageUploader: {
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                },
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                });


                }
                });














                draft saved

                draft discarded


















                StackExchange.ready(
                function () {
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3151650%2fpractical-application-of-matrices-and-determinants%23new-answer', 'question_page');
                }
                );

                Post as a guest















                Required, but never shown

























                8 Answers
                8






                active

                oldest

                votes








                8 Answers
                8






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes









                7












                $begingroup$

                My first brief understanding of matrices is that they offer an elegant way to deal with data (combinatorially, sort of). A classical and really concrete example would be a discrete Markov chain (don't be frightened by its name). Say you are given the following information: if today is rainy, then tomorrow has a 0.9 probability to be rainy; if today is sunny, then tomorrow has a 0.5 probability to be rainy. Then you may organize these data into a matrix:



                $$A=begin{pmatrix}
                0.9 & 0.5 \
                0.1 & 0.5
                end{pmatrix}$$



                Now if you compute $A^2=begin{pmatrix}
                0.86 & 0.7 \
                0.14 & 0.3
                end{pmatrix}$
                , what do you get? 0.86 is the probability that if today is rainy then the day after tomorrow is still rainy and 0.7 is the probability that if today is sunny then the day after tomorrow is rainy. And this pattern holds for $A^n$ an arbitrary $n$.



                That's the simple point: matrices are a way to calculate elegantly. In my understanding, this aligns with the spirit of mathematics. Math occurs when people try to solve practical problems. People find that if they make good definitions and use good notations, things will be a lot easier. Here comes math. And the matrix is such a good notation to make things easier.






                share|cite|improve this answer









                $endgroup$


















                  7












                  $begingroup$

                  My first brief understanding of matrices is that they offer an elegant way to deal with data (combinatorially, sort of). A classical and really concrete example would be a discrete Markov chain (don't be frightened by its name). Say you are given the following information: if today is rainy, then tomorrow has a 0.9 probability to be rainy; if today is sunny, then tomorrow has a 0.5 probability to be rainy. Then you may organize these data into a matrix:



                  $$A=begin{pmatrix}
                  0.9 & 0.5 \
                  0.1 & 0.5
                  end{pmatrix}$$



                  Now if you compute $A^2=begin{pmatrix}
                  0.86 & 0.7 \
                  0.14 & 0.3
                  end{pmatrix}$
                  , what do you get? 0.86 is the probability that if today is rainy then the day after tomorrow is still rainy and 0.7 is the probability that if today is sunny then the day after tomorrow is rainy. And this pattern holds for $A^n$ an arbitrary $n$.



                  That's the simple point: matrices are a way to calculate elegantly. In my understanding, this aligns with the spirit of mathematics. Math occurs when people try to solve practical problems. People find that if they make good definitions and use good notations, things will be a lot easier. Here comes math. And the matrix is such a good notation to make things easier.






                  share|cite|improve this answer









                  $endgroup$
















                    7












                    7








                    7





                    $begingroup$

                    My first brief understanding of matrices is that they offer an elegant way to deal with data (combinatorially, sort of). A classical and really concrete example would be a discrete Markov chain (don't be frightened by its name). Say you are given the following information: if today is rainy, then tomorrow has a 0.9 probability to be rainy; if today is sunny, then tomorrow has a 0.5 probability to be rainy. Then you may organize these data into a matrix:



                    $$A=begin{pmatrix}
                    0.9 & 0.5 \
                    0.1 & 0.5
                    end{pmatrix}$$



                    Now if you compute $A^2=begin{pmatrix}
                    0.86 & 0.7 \
                    0.14 & 0.3
                    end{pmatrix}$
                    , what do you get? 0.86 is the probability that if today is rainy then the day after tomorrow is still rainy and 0.7 is the probability that if today is sunny then the day after tomorrow is rainy. And this pattern holds for $A^n$ an arbitrary $n$.



                    That's the simple point: matrices are a way to calculate elegantly. In my understanding, this aligns with the spirit of mathematics. Math occurs when people try to solve practical problems. People find that if they make good definitions and use good notations, things will be a lot easier. Here comes math. And the matrix is such a good notation to make things easier.






                    share|cite|improve this answer









                    $endgroup$



                    My first brief understanding of matrices is that they offer an elegant way to deal with data (combinatorially, sort of). A classical and really concrete example would be a discrete Markov chain (don't be frightened by its name). Say you are given the following information: if today is rainy, then tomorrow has a 0.9 probability to be rainy; if today is sunny, then tomorrow has a 0.5 probability to be rainy. Then you may organize these data into a matrix:



                    $$A=begin{pmatrix}
                    0.9 & 0.5 \
                    0.1 & 0.5
                    end{pmatrix}$$



                    Now if you compute $A^2=begin{pmatrix}
                    0.86 & 0.7 \
                    0.14 & 0.3
                    end{pmatrix}$
                    , what do you get? 0.86 is the probability that if today is rainy then the day after tomorrow is still rainy and 0.7 is the probability that if today is sunny then the day after tomorrow is rainy. And this pattern holds for $A^n$ an arbitrary $n$.



                    That's the simple point: matrices are a way to calculate elegantly. In my understanding, this aligns with the spirit of mathematics. Math occurs when people try to solve practical problems. People find that if they make good definitions and use good notations, things will be a lot easier. Here comes math. And the matrix is such a good notation to make things easier.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Mar 17 at 15:55









                    J. WangJ. Wang

                    1816




                    1816























                        5












                        $begingroup$

                        Matrices are used widely in computer graphics. If you have the coordinates of an object in 3d space, then scaling, stretching and rotating the object can all be done by considering the coordinates to be vectors and multiplying them by the appropriate matrix. When you want to display that object on-screen, the projection down to a 2D object is also a matrix multiplication.






                        share|cite|improve this answer









                        $endgroup$


















                          5












                          $begingroup$

                          Matrices are used widely in computer graphics. If you have the coordinates of an object in 3d space, then scaling, stretching and rotating the object can all be done by considering the coordinates to be vectors and multiplying them by the appropriate matrix. When you want to display that object on-screen, the projection down to a 2D object is also a matrix multiplication.






                          share|cite|improve this answer









                          $endgroup$
















                            5












                            5








                            5





                            $begingroup$

                            Matrices are used widely in computer graphics. If you have the coordinates of an object in 3d space, then scaling, stretching and rotating the object can all be done by considering the coordinates to be vectors and multiplying them by the appropriate matrix. When you want to display that object on-screen, the projection down to a 2D object is also a matrix multiplication.






                            share|cite|improve this answer









                            $endgroup$



                            Matrices are used widely in computer graphics. If you have the coordinates of an object in 3d space, then scaling, stretching and rotating the object can all be done by considering the coordinates to be vectors and multiplying them by the appropriate matrix. When you want to display that object on-screen, the projection down to a 2D object is also a matrix multiplication.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Mar 17 at 19:02









                            David RicherbyDavid Richerby

                            2,25511324




                            2,25511324























                                5












                                $begingroup$

                                Determinants are of great theoretical significance in mathematics, since in general "the determinant of something $= 0$" means something very special is going on, which may be either good news of bad news depending on the situation.



                                On the other hand determinants have very little practical use in numerical calculations, since evaluating a determinant of order $n$ "from first principles" involves $n!$ operations, which is prohibitively expensive unless $n$ is very small. Even Cramer's rule, which is often taught in an introductory course on determinants and matrices, is not the cheapest way to solve $n$ linear equations in $n$ variables numerically if $n>2$, which is a pretty serious limitation!



                                Also, if the typical magnitude of each term in a matrix of of order $n$ is $a$, the determinant is likely to be of magnitude $a^n$, and for large $n$ (say $n > 1000$) that number will usually be too large or too small to do efficient computer calculations, unless $|a|$ is very close to $1$.



                                On the other hand, almost every type of numerical calculation involves the same techniques that are used to solve equations, so the practical applications of matrices are more or less "the whole of applied mathematics, science, and engineering". Most applications involve systems of equations that are much too big to create and solve by hand, so it is hard to give realistic simple examples. In real-world numerical applications, a set of $n$ linear equations in $n$ variables would still be "small" from a practical point of view if $n = 100,000,$ and even $n = 1,000,000$ is not usually big enough to cause any real problems - the solution would only take a few seconds on a typical personal computer.






                                share|cite|improve this answer









                                $endgroup$













                                • $begingroup$
                                  Why "even Cramer's rule"? That rule is so obviously inefficient that it's hardly worth mentioning, as every introductory course covers Gaussian elimination, which is clearly much more efficient.
                                  $endgroup$
                                  – Servaes
                                  Mar 17 at 20:19










                                • $begingroup$
                                  Whilst it doesn't make it more efficient, the determinant calculations in Cramer's rule can be done using Gaussian elimination which means its at least in the same complexity class surely?
                                  $endgroup$
                                  – jacob1729
                                  Mar 17 at 23:10
















                                5












                                $begingroup$

                                Determinants are of great theoretical significance in mathematics, since in general "the determinant of something $= 0$" means something very special is going on, which may be either good news of bad news depending on the situation.



                                On the other hand determinants have very little practical use in numerical calculations, since evaluating a determinant of order $n$ "from first principles" involves $n!$ operations, which is prohibitively expensive unless $n$ is very small. Even Cramer's rule, which is often taught in an introductory course on determinants and matrices, is not the cheapest way to solve $n$ linear equations in $n$ variables numerically if $n>2$, which is a pretty serious limitation!



                                Also, if the typical magnitude of each term in a matrix of of order $n$ is $a$, the determinant is likely to be of magnitude $a^n$, and for large $n$ (say $n > 1000$) that number will usually be too large or too small to do efficient computer calculations, unless $|a|$ is very close to $1$.



                                On the other hand, almost every type of numerical calculation involves the same techniques that are used to solve equations, so the practical applications of matrices are more or less "the whole of applied mathematics, science, and engineering". Most applications involve systems of equations that are much too big to create and solve by hand, so it is hard to give realistic simple examples. In real-world numerical applications, a set of $n$ linear equations in $n$ variables would still be "small" from a practical point of view if $n = 100,000,$ and even $n = 1,000,000$ is not usually big enough to cause any real problems - the solution would only take a few seconds on a typical personal computer.






                                share|cite|improve this answer









                                $endgroup$













                                • $begingroup$
                                  Why "even Cramer's rule"? That rule is so obviously inefficient that it's hardly worth mentioning, as every introductory course covers Gaussian elimination, which is clearly much more efficient.
                                  $endgroup$
                                  – Servaes
                                  Mar 17 at 20:19










                                • $begingroup$
                                  Whilst it doesn't make it more efficient, the determinant calculations in Cramer's rule can be done using Gaussian elimination which means its at least in the same complexity class surely?
                                  $endgroup$
                                  – jacob1729
                                  Mar 17 at 23:10














                                5












                                5








                                5





                                $begingroup$

                                Determinants are of great theoretical significance in mathematics, since in general "the determinant of something $= 0$" means something very special is going on, which may be either good news of bad news depending on the situation.



                                On the other hand determinants have very little practical use in numerical calculations, since evaluating a determinant of order $n$ "from first principles" involves $n!$ operations, which is prohibitively expensive unless $n$ is very small. Even Cramer's rule, which is often taught in an introductory course on determinants and matrices, is not the cheapest way to solve $n$ linear equations in $n$ variables numerically if $n>2$, which is a pretty serious limitation!



                                Also, if the typical magnitude of each term in a matrix of of order $n$ is $a$, the determinant is likely to be of magnitude $a^n$, and for large $n$ (say $n > 1000$) that number will usually be too large or too small to do efficient computer calculations, unless $|a|$ is very close to $1$.



                                On the other hand, almost every type of numerical calculation involves the same techniques that are used to solve equations, so the practical applications of matrices are more or less "the whole of applied mathematics, science, and engineering". Most applications involve systems of equations that are much too big to create and solve by hand, so it is hard to give realistic simple examples. In real-world numerical applications, a set of $n$ linear equations in $n$ variables would still be "small" from a practical point of view if $n = 100,000,$ and even $n = 1,000,000$ is not usually big enough to cause any real problems - the solution would only take a few seconds on a typical personal computer.






                                share|cite|improve this answer









                                $endgroup$



                                Determinants are of great theoretical significance in mathematics, since in general "the determinant of something $= 0$" means something very special is going on, which may be either good news of bad news depending on the situation.



                                On the other hand determinants have very little practical use in numerical calculations, since evaluating a determinant of order $n$ "from first principles" involves $n!$ operations, which is prohibitively expensive unless $n$ is very small. Even Cramer's rule, which is often taught in an introductory course on determinants and matrices, is not the cheapest way to solve $n$ linear equations in $n$ variables numerically if $n>2$, which is a pretty serious limitation!



                                Also, if the typical magnitude of each term in a matrix of of order $n$ is $a$, the determinant is likely to be of magnitude $a^n$, and for large $n$ (say $n > 1000$) that number will usually be too large or too small to do efficient computer calculations, unless $|a|$ is very close to $1$.



                                On the other hand, almost every type of numerical calculation involves the same techniques that are used to solve equations, so the practical applications of matrices are more or less "the whole of applied mathematics, science, and engineering". Most applications involve systems of equations that are much too big to create and solve by hand, so it is hard to give realistic simple examples. In real-world numerical applications, a set of $n$ linear equations in $n$ variables would still be "small" from a practical point of view if $n = 100,000,$ and even $n = 1,000,000$ is not usually big enough to cause any real problems - the solution would only take a few seconds on a typical personal computer.







                                share|cite|improve this answer












                                share|cite|improve this answer



                                share|cite|improve this answer










                                answered Mar 17 at 19:19









                                alephzeroalephzero

                                72037




                                72037












                                • $begingroup$
                                  Why "even Cramer's rule"? That rule is so obviously inefficient that it's hardly worth mentioning, as every introductory course covers Gaussian elimination, which is clearly much more efficient.
                                  $endgroup$
                                  – Servaes
                                  Mar 17 at 20:19










                                • $begingroup$
                                  Whilst it doesn't make it more efficient, the determinant calculations in Cramer's rule can be done using Gaussian elimination which means its at least in the same complexity class surely?
                                  $endgroup$
                                  – jacob1729
                                  Mar 17 at 23:10


















                                • $begingroup$
                                  Why "even Cramer's rule"? That rule is so obviously inefficient that it's hardly worth mentioning, as every introductory course covers Gaussian elimination, which is clearly much more efficient.
                                  $endgroup$
                                  – Servaes
                                  Mar 17 at 20:19










                                • $begingroup$
                                  Whilst it doesn't make it more efficient, the determinant calculations in Cramer's rule can be done using Gaussian elimination which means its at least in the same complexity class surely?
                                  $endgroup$
                                  – jacob1729
                                  Mar 17 at 23:10
















                                $begingroup$
                                Why "even Cramer's rule"? That rule is so obviously inefficient that it's hardly worth mentioning, as every introductory course covers Gaussian elimination, which is clearly much more efficient.
                                $endgroup$
                                – Servaes
                                Mar 17 at 20:19




                                $begingroup$
                                Why "even Cramer's rule"? That rule is so obviously inefficient that it's hardly worth mentioning, as every introductory course covers Gaussian elimination, which is clearly much more efficient.
                                $endgroup$
                                – Servaes
                                Mar 17 at 20:19












                                $begingroup$
                                Whilst it doesn't make it more efficient, the determinant calculations in Cramer's rule can be done using Gaussian elimination which means its at least in the same complexity class surely?
                                $endgroup$
                                – jacob1729
                                Mar 17 at 23:10




                                $begingroup$
                                Whilst it doesn't make it more efficient, the determinant calculations in Cramer's rule can be done using Gaussian elimination which means its at least in the same complexity class surely?
                                $endgroup$
                                – jacob1729
                                Mar 17 at 23:10











                                3












                                $begingroup$

                                Here's an application in calculus. The multivariate generalisation of integration by substitution viz. $x=f(y)implies dx=f^prime(y)dy$ uses the determinant of a matrix called a Jacobian in place of the $f^prime$ factor. In particular, the chain rule $dx_i=sum_j J_{ij}dy_j,,J_{ij}:=frac{partial x_i}{partial y_j}$ for $n$-dimensional vectors $vec{x},,vec{y}$ can be summarised as $dvec{x}=Jdvec{y}$. Then $d^nvec{x}=|det J|d^nvec{y}$.






                                share|cite|improve this answer









                                $endgroup$


















                                  3












                                  $begingroup$

                                  Here's an application in calculus. The multivariate generalisation of integration by substitution viz. $x=f(y)implies dx=f^prime(y)dy$ uses the determinant of a matrix called a Jacobian in place of the $f^prime$ factor. In particular, the chain rule $dx_i=sum_j J_{ij}dy_j,,J_{ij}:=frac{partial x_i}{partial y_j}$ for $n$-dimensional vectors $vec{x},,vec{y}$ can be summarised as $dvec{x}=Jdvec{y}$. Then $d^nvec{x}=|det J|d^nvec{y}$.






                                  share|cite|improve this answer









                                  $endgroup$
















                                    3












                                    3








                                    3





                                    $begingroup$

                                    Here's an application in calculus. The multivariate generalisation of integration by substitution viz. $x=f(y)implies dx=f^prime(y)dy$ uses the determinant of a matrix called a Jacobian in place of the $f^prime$ factor. In particular, the chain rule $dx_i=sum_j J_{ij}dy_j,,J_{ij}:=frac{partial x_i}{partial y_j}$ for $n$-dimensional vectors $vec{x},,vec{y}$ can be summarised as $dvec{x}=Jdvec{y}$. Then $d^nvec{x}=|det J|d^nvec{y}$.






                                    share|cite|improve this answer









                                    $endgroup$



                                    Here's an application in calculus. The multivariate generalisation of integration by substitution viz. $x=f(y)implies dx=f^prime(y)dy$ uses the determinant of a matrix called a Jacobian in place of the $f^prime$ factor. In particular, the chain rule $dx_i=sum_j J_{ij}dy_j,,J_{ij}:=frac{partial x_i}{partial y_j}$ for $n$-dimensional vectors $vec{x},,vec{y}$ can be summarised as $dvec{x}=Jdvec{y}$. Then $d^nvec{x}=|det J|d^nvec{y}$.







                                    share|cite|improve this answer












                                    share|cite|improve this answer



                                    share|cite|improve this answer










                                    answered Mar 17 at 15:27









                                    J.G.J.G.

                                    31.8k23250




                                    31.8k23250























                                        3












                                        $begingroup$

                                        There are plenty of applications of determinants, but I will just mention one that applies to optimization. A totally unimodular matrix is a matrix (doesn’t have to be square) that every square submatrix has a determinant of 0, 1 or -1. It turns out that (by Cramer’s rule) that if a constraint matrix $A$ of a linear program max ${c’x:: Ax leq b, x in mathbb{R}^n_+} $ is totally unimodular, it is guaranteed to have an integer solution if a solution exists. In other words, the polyhedron formed by $P = {x:: Ax leq b}$ has integer vertices in $mathbb{R}^n$. This has major implications in integer programming, as we solve an integer program that has a totally unimodular matrix as a linear program. This is advantageous because a linear program can me solved in polynomial time, where there is no polynomial algorithm for integer programs.






                                        share|cite|improve this answer









                                        $endgroup$


















                                          3












                                          $begingroup$

                                          There are plenty of applications of determinants, but I will just mention one that applies to optimization. A totally unimodular matrix is a matrix (doesn’t have to be square) that every square submatrix has a determinant of 0, 1 or -1. It turns out that (by Cramer’s rule) that if a constraint matrix $A$ of a linear program max ${c’x:: Ax leq b, x in mathbb{R}^n_+} $ is totally unimodular, it is guaranteed to have an integer solution if a solution exists. In other words, the polyhedron formed by $P = {x:: Ax leq b}$ has integer vertices in $mathbb{R}^n$. This has major implications in integer programming, as we solve an integer program that has a totally unimodular matrix as a linear program. This is advantageous because a linear program can me solved in polynomial time, where there is no polynomial algorithm for integer programs.






                                          share|cite|improve this answer









                                          $endgroup$
















                                            3












                                            3








                                            3





                                            $begingroup$

                                            There are plenty of applications of determinants, but I will just mention one that applies to optimization. A totally unimodular matrix is a matrix (doesn’t have to be square) that every square submatrix has a determinant of 0, 1 or -1. It turns out that (by Cramer’s rule) that if a constraint matrix $A$ of a linear program max ${c’x:: Ax leq b, x in mathbb{R}^n_+} $ is totally unimodular, it is guaranteed to have an integer solution if a solution exists. In other words, the polyhedron formed by $P = {x:: Ax leq b}$ has integer vertices in $mathbb{R}^n$. This has major implications in integer programming, as we solve an integer program that has a totally unimodular matrix as a linear program. This is advantageous because a linear program can me solved in polynomial time, where there is no polynomial algorithm for integer programs.






                                            share|cite|improve this answer









                                            $endgroup$



                                            There are plenty of applications of determinants, but I will just mention one that applies to optimization. A totally unimodular matrix is a matrix (doesn’t have to be square) that every square submatrix has a determinant of 0, 1 or -1. It turns out that (by Cramer’s rule) that if a constraint matrix $A$ of a linear program max ${c’x:: Ax leq b, x in mathbb{R}^n_+} $ is totally unimodular, it is guaranteed to have an integer solution if a solution exists. In other words, the polyhedron formed by $P = {x:: Ax leq b}$ has integer vertices in $mathbb{R}^n$. This has major implications in integer programming, as we solve an integer program that has a totally unimodular matrix as a linear program. This is advantageous because a linear program can me solved in polynomial time, where there is no polynomial algorithm for integer programs.







                                            share|cite|improve this answer












                                            share|cite|improve this answer



                                            share|cite|improve this answer










                                            answered Mar 17 at 15:36









                                            JBLJBL

                                            493210




                                            493210























                                                3












                                                $begingroup$

                                                Besides the applications already mentioned in the previous answers, just consider that matrices are the fundamental basis for Finite Elements design, today widely used in every sector of engineering.



                                                Actually a truss is a physical representation of a matrix: if its stiffness matrix has null determinant, it means that there can be movements without external forces, i.e. the truss will collapse.



                                                Also, in the continuous analysis of the deformation of bodies, stress and strain each are represented by matrices (tensors).



                                                The inertia of a body to rotation is a matrix.



                                                An electric network is described by a matrix voltages/ currents, and a null determinant denotes a short somewhere.



                                                And so on ...






                                                share|cite|improve this answer











                                                $endgroup$


















                                                  3












                                                  $begingroup$

                                                  Besides the applications already mentioned in the previous answers, just consider that matrices are the fundamental basis for Finite Elements design, today widely used in every sector of engineering.



                                                  Actually a truss is a physical representation of a matrix: if its stiffness matrix has null determinant, it means that there can be movements without external forces, i.e. the truss will collapse.



                                                  Also, in the continuous analysis of the deformation of bodies, stress and strain each are represented by matrices (tensors).



                                                  The inertia of a body to rotation is a matrix.



                                                  An electric network is described by a matrix voltages/ currents, and a null determinant denotes a short somewhere.



                                                  And so on ...






                                                  share|cite|improve this answer











                                                  $endgroup$
















                                                    3












                                                    3








                                                    3





                                                    $begingroup$

                                                    Besides the applications already mentioned in the previous answers, just consider that matrices are the fundamental basis for Finite Elements design, today widely used in every sector of engineering.



                                                    Actually a truss is a physical representation of a matrix: if its stiffness matrix has null determinant, it means that there can be movements without external forces, i.e. the truss will collapse.



                                                    Also, in the continuous analysis of the deformation of bodies, stress and strain each are represented by matrices (tensors).



                                                    The inertia of a body to rotation is a matrix.



                                                    An electric network is described by a matrix voltages/ currents, and a null determinant denotes a short somewhere.



                                                    And so on ...






                                                    share|cite|improve this answer











                                                    $endgroup$



                                                    Besides the applications already mentioned in the previous answers, just consider that matrices are the fundamental basis for Finite Elements design, today widely used in every sector of engineering.



                                                    Actually a truss is a physical representation of a matrix: if its stiffness matrix has null determinant, it means that there can be movements without external forces, i.e. the truss will collapse.



                                                    Also, in the continuous analysis of the deformation of bodies, stress and strain each are represented by matrices (tensors).



                                                    The inertia of a body to rotation is a matrix.



                                                    An electric network is described by a matrix voltages/ currents, and a null determinant denotes a short somewhere.



                                                    And so on ...







                                                    share|cite|improve this answer














                                                    share|cite|improve this answer



                                                    share|cite|improve this answer








                                                    edited Mar 18 at 16:07

























                                                    answered Mar 17 at 20:18









                                                    G CabG Cab

                                                    20.4k31341




                                                    20.4k31341























                                                        2












                                                        $begingroup$

                                                        If the determinant of a matrix is zero, then there are no solutions to a set of equations represented by an nXn matrix set equal to a 1Xn matrix. If it is non-zero, then there are solutions and they can all be found using Cramer's Rule. They are also used in Photoshop for various visual tricks; they are used to cast 3D shapes onto a 2D surface; they are used to analyze seismic waves... and a hundred other applications where data need to be crunched in a simple manner.






                                                        share|cite|improve this answer









                                                        $endgroup$


















                                                          2












                                                          $begingroup$

                                                          If the determinant of a matrix is zero, then there are no solutions to a set of equations represented by an nXn matrix set equal to a 1Xn matrix. If it is non-zero, then there are solutions and they can all be found using Cramer's Rule. They are also used in Photoshop for various visual tricks; they are used to cast 3D shapes onto a 2D surface; they are used to analyze seismic waves... and a hundred other applications where data need to be crunched in a simple manner.






                                                          share|cite|improve this answer









                                                          $endgroup$
















                                                            2












                                                            2








                                                            2





                                                            $begingroup$

                                                            If the determinant of a matrix is zero, then there are no solutions to a set of equations represented by an nXn matrix set equal to a 1Xn matrix. If it is non-zero, then there are solutions and they can all be found using Cramer's Rule. They are also used in Photoshop for various visual tricks; they are used to cast 3D shapes onto a 2D surface; they are used to analyze seismic waves... and a hundred other applications where data need to be crunched in a simple manner.






                                                            share|cite|improve this answer









                                                            $endgroup$



                                                            If the determinant of a matrix is zero, then there are no solutions to a set of equations represented by an nXn matrix set equal to a 1Xn matrix. If it is non-zero, then there are solutions and they can all be found using Cramer's Rule. They are also used in Photoshop for various visual tricks; they are used to cast 3D shapes onto a 2D surface; they are used to analyze seismic waves... and a hundred other applications where data need to be crunched in a simple manner.







                                                            share|cite|improve this answer












                                                            share|cite|improve this answer



                                                            share|cite|improve this answer










                                                            answered Mar 17 at 15:20









                                                            poetasispoetasis

                                                            430217




                                                            430217























                                                                0












                                                                $begingroup$

                                                                In system-theory,




                                                                1. systems can be represented by matrices and each column represent the internal-state of the system.

                                                                2. If a determinant of one such matrix is zero, then we can say that one of the state associated with certain dynamics is being duplicated.

                                                                3. Based on some special matrix operations, we arrive at something called as relative-gain-array (RGA). This will give information on how much each states/output of a system interactes with each other, collectively speaking.


                                                                However, top are just a few examples. There are much more.






                                                                share|cite|improve this answer









                                                                $endgroup$


















                                                                  0












                                                                  $begingroup$

                                                                  In system-theory,




                                                                  1. systems can be represented by matrices and each column represent the internal-state of the system.

                                                                  2. If a determinant of one such matrix is zero, then we can say that one of the state associated with certain dynamics is being duplicated.

                                                                  3. Based on some special matrix operations, we arrive at something called as relative-gain-array (RGA). This will give information on how much each states/output of a system interactes with each other, collectively speaking.


                                                                  However, top are just a few examples. There are much more.






                                                                  share|cite|improve this answer









                                                                  $endgroup$
















                                                                    0












                                                                    0








                                                                    0





                                                                    $begingroup$

                                                                    In system-theory,




                                                                    1. systems can be represented by matrices and each column represent the internal-state of the system.

                                                                    2. If a determinant of one such matrix is zero, then we can say that one of the state associated with certain dynamics is being duplicated.

                                                                    3. Based on some special matrix operations, we arrive at something called as relative-gain-array (RGA). This will give information on how much each states/output of a system interactes with each other, collectively speaking.


                                                                    However, top are just a few examples. There are much more.






                                                                    share|cite|improve this answer









                                                                    $endgroup$



                                                                    In system-theory,




                                                                    1. systems can be represented by matrices and each column represent the internal-state of the system.

                                                                    2. If a determinant of one such matrix is zero, then we can say that one of the state associated with certain dynamics is being duplicated.

                                                                    3. Based on some special matrix operations, we arrive at something called as relative-gain-array (RGA). This will give information on how much each states/output of a system interactes with each other, collectively speaking.


                                                                    However, top are just a few examples. There are much more.







                                                                    share|cite|improve this answer












                                                                    share|cite|improve this answer



                                                                    share|cite|improve this answer










                                                                    answered Mar 18 at 10:33









                                                                    RaajaRaaja

                                                                    208312




                                                                    208312






























                                                                        draft saved

                                                                        draft discarded




















































                                                                        Thanks for contributing an answer to Mathematics Stack Exchange!


                                                                        • Please be sure to answer the question. Provide details and share your research!

                                                                        But avoid



                                                                        • Asking for help, clarification, or responding to other answers.

                                                                        • Making statements based on opinion; back them up with references or personal experience.


                                                                        Use MathJax to format equations. MathJax reference.


                                                                        To learn more, see our tips on writing great answers.




                                                                        draft saved


                                                                        draft discarded














                                                                        StackExchange.ready(
                                                                        function () {
                                                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3151650%2fpractical-application-of-matrices-and-determinants%23new-answer', 'question_page');
                                                                        }
                                                                        );

                                                                        Post as a guest















                                                                        Required, but never shown





















































                                                                        Required, but never shown














                                                                        Required, but never shown












                                                                        Required, but never shown







                                                                        Required, but never shown

































                                                                        Required, but never shown














                                                                        Required, but never shown












                                                                        Required, but never shown







                                                                        Required, but never shown







                                                                        Popular posts from this blog

                                                                        Masuk log Menu navigasi

                                                                        Identifying “long and narrow” polygons in with PostGISlength and width of polygonWhy postgis st_overlaps reports Qgis' “avoid intersections” generated polygon as overlapping with others?Adjusting polygons to boundary and filling holesDrawing polygons with fixed area?How to remove spikes in Polygons with PostGISDeleting sliver polygons after difference operation in QGIS?Snapping boundaries in PostGISSplit polygon into parts adding attributes based on underlying polygon in QGISSplitting overlap between polygons and assign to nearest polygon using PostGIS?Expanding polygons and clipping at midpoint?Removing Intersection of Buffers in Same Layers

                                                                        Старые Смолеговицы Содержание История | География | Демография | Достопримечательности | Примечания | НавигацияHGЯOLHGЯOL41 206 832 01641 606 406 141Административно-территориальное деление Ленинградской области«Переписная оброчная книга Водской пятины 1500 года», С. 793«Карта Ингерманландии: Ивангорода, Яма, Копорья, Нотеборга», по материалам 1676 г.«Генеральная карта провинции Ингерманландии» Э. Белинга и А. Андерсина, 1704 г., составлена по материалам 1678 г.«Географический чертёж над Ижорскою землей со своими городами» Адриана Шонбека 1705 г.Новая и достоверная всей Ингерманландии ланткарта. Грав. А. Ростовцев. СПб., 1727 г.Топографическая карта Санкт-Петербургской губернии. 5-и верстка. Шуберт. 1834 г.Описание Санкт-Петербургской губернии по уездам и станамСпецкарта западной части России Ф. Ф. Шуберта. 1844 г.Алфавитный список селений по уездам и станам С.-Петербургской губернииСписки населённых мест Российской Империи, составленные и издаваемые центральным статистическим комитетом министерства внутренних дел. XXXVII. Санкт-Петербургская губерния. По состоянию на 1862 год. СПб. 1864. С. 203Материалы по статистике народного хозяйства в С.-Петербургской губернии. Вып. IX. Частновладельческое хозяйство в Ямбургском уезде. СПб, 1888, С. 146, С. 2, 7, 54Положение о гербе муниципального образования Курское сельское поселениеСправочник истории административно-территориального деления Ленинградской области.Топографическая карта Ленинградской области, квадрат О-35-23-В (Хотыницы), 1930 г.АрхивированоАдминистративно-территориальное деление Ленинградской области. — Л., 1933, С. 27, 198АрхивированоАдминистративно-экономический справочник по Ленинградской области. — Л., 1936, с. 219АрхивированоАдминистративно-территориальное деление Ленинградской области. — Л., 1966, с. 175АрхивированоАдминистративно-территориальное деление Ленинградской области. — Лениздат, 1973, С. 180АрхивированоАдминистративно-территориальное деление Ленинградской области. — Лениздат, 1990, ISBN 5-289-00612-5, С. 38АрхивированоАдминистративно-территориальное деление Ленинградской области. — СПб., 2007, с. 60АрхивированоКоряков Юрий База данных «Этно-языковой состав населённых пунктов России». Ленинградская область.Административно-территориальное деление Ленинградской области. — СПб, 1997, ISBN 5-86153-055-6, С. 41АрхивированоКультовый комплекс Старые Смолеговицы // Электронная энциклопедия ЭрмитажаПроблемы выявления, изучения и сохранения культовых комплексов с каменными крестами: по материалам работ 2016-2017 гг. в Ленинградской области