Homology of the fiber The Next CEO of Stack OverflowSpectral sequence for reduced homologyweak equivalence of simplicial setsHomology of loop spaceIs the suspension of a weak equivalence again a weak equivalence?localization and $E_infty$-spacesfiber, homotopy fiber of spacesVietoris-Begle theorem for simplicial setsPullback and homologyTo compare the total, base and fiber spaces of two fiber bundleshomology of a base space of a a fiber sequence

Homology of the fiber



The Next CEO of Stack OverflowSpectral sequence for reduced homologyweak equivalence of simplicial setsHomology of loop spaceIs the suspension of a weak equivalence again a weak equivalence?localization and $E_infty$-spacesfiber, homotopy fiber of spacesVietoris-Begle theorem for simplicial setsPullback and homologyTo compare the total, base and fiber spaces of two fiber bundleshomology of a base space of a a fiber sequence










10












$begingroup$


Let $f:Xrightarrow Y $ be a fibration (with fiber $F$) between simply connected spaces such that
$H_ast(f):H_ast(X,mathbbZ)rightarrow H_ast(Y,mathbbZ)$ is an isomorphism for $astleq n$



Is it true that the reduced homology of the fiber is $tildeH_ast(F,mathbbZ)=0$ for $astleq n$?










share|cite|improve this question











$endgroup$







  • 7




    $begingroup$
    What about the Hopf fibration $f:mathbbS^3rightarrow mathbbS^2$ with fiber $mathbbS^1$? $H_1(f)$ is an isomorphism but $H_1(mathbbS^1)=mathbbZ$.
    $endgroup$
    – abx
    Mar 18 at 12:04






  • 1




    $begingroup$
    Besides the proof below, this (the vanishing of the reduced homology of fiber below dimension n) also admits an easy proof using the Serre spectral sequence.
    $endgroup$
    – Nicholas Kuhn
    Mar 18 at 22:02















10












$begingroup$


Let $f:Xrightarrow Y $ be a fibration (with fiber $F$) between simply connected spaces such that
$H_ast(f):H_ast(X,mathbbZ)rightarrow H_ast(Y,mathbbZ)$ is an isomorphism for $astleq n$



Is it true that the reduced homology of the fiber is $tildeH_ast(F,mathbbZ)=0$ for $astleq n$?










share|cite|improve this question











$endgroup$







  • 7




    $begingroup$
    What about the Hopf fibration $f:mathbbS^3rightarrow mathbbS^2$ with fiber $mathbbS^1$? $H_1(f)$ is an isomorphism but $H_1(mathbbS^1)=mathbbZ$.
    $endgroup$
    – abx
    Mar 18 at 12:04






  • 1




    $begingroup$
    Besides the proof below, this (the vanishing of the reduced homology of fiber below dimension n) also admits an easy proof using the Serre spectral sequence.
    $endgroup$
    – Nicholas Kuhn
    Mar 18 at 22:02













10












10








10


2



$begingroup$


Let $f:Xrightarrow Y $ be a fibration (with fiber $F$) between simply connected spaces such that
$H_ast(f):H_ast(X,mathbbZ)rightarrow H_ast(Y,mathbbZ)$ is an isomorphism for $astleq n$



Is it true that the reduced homology of the fiber is $tildeH_ast(F,mathbbZ)=0$ for $astleq n$?










share|cite|improve this question











$endgroup$




Let $f:Xrightarrow Y $ be a fibration (with fiber $F$) between simply connected spaces such that
$H_ast(f):H_ast(X,mathbbZ)rightarrow H_ast(Y,mathbbZ)$ is an isomorphism for $astleq n$



Is it true that the reduced homology of the fiber is $tildeH_ast(F,mathbbZ)=0$ for $astleq n$?







at.algebraic-topology homotopy-theory






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 18 at 17:08









Peter Mortensen

1675




1675










asked Mar 18 at 11:38









ParisParis

1165




1165







  • 7




    $begingroup$
    What about the Hopf fibration $f:mathbbS^3rightarrow mathbbS^2$ with fiber $mathbbS^1$? $H_1(f)$ is an isomorphism but $H_1(mathbbS^1)=mathbbZ$.
    $endgroup$
    – abx
    Mar 18 at 12:04






  • 1




    $begingroup$
    Besides the proof below, this (the vanishing of the reduced homology of fiber below dimension n) also admits an easy proof using the Serre spectral sequence.
    $endgroup$
    – Nicholas Kuhn
    Mar 18 at 22:02












  • 7




    $begingroup$
    What about the Hopf fibration $f:mathbbS^3rightarrow mathbbS^2$ with fiber $mathbbS^1$? $H_1(f)$ is an isomorphism but $H_1(mathbbS^1)=mathbbZ$.
    $endgroup$
    – abx
    Mar 18 at 12:04






  • 1




    $begingroup$
    Besides the proof below, this (the vanishing of the reduced homology of fiber below dimension n) also admits an easy proof using the Serre spectral sequence.
    $endgroup$
    – Nicholas Kuhn
    Mar 18 at 22:02







7




7




$begingroup$
What about the Hopf fibration $f:mathbbS^3rightarrow mathbbS^2$ with fiber $mathbbS^1$? $H_1(f)$ is an isomorphism but $H_1(mathbbS^1)=mathbbZ$.
$endgroup$
– abx
Mar 18 at 12:04




$begingroup$
What about the Hopf fibration $f:mathbbS^3rightarrow mathbbS^2$ with fiber $mathbbS^1$? $H_1(f)$ is an isomorphism but $H_1(mathbbS^1)=mathbbZ$.
$endgroup$
– abx
Mar 18 at 12:04




1




1




$begingroup$
Besides the proof below, this (the vanishing of the reduced homology of fiber below dimension n) also admits an easy proof using the Serre spectral sequence.
$endgroup$
– Nicholas Kuhn
Mar 18 at 22:02




$begingroup$
Besides the proof below, this (the vanishing of the reduced homology of fiber below dimension n) also admits an easy proof using the Serre spectral sequence.
$endgroup$
– Nicholas Kuhn
Mar 18 at 22:02










1 Answer
1






active

oldest

votes


















23












$begingroup$

As usual, there's no loss of generality in assuming that $f$ is the inclusion of a subspace $Xsubset Y$, replacing $Y$ with the homotopy equivalent mapping cylinder of $f$ if necessary. By your assumptions and the five lemma, $H_*(Y,X)=0$ for $*leq n$, and the pair $(Y,X)$ is simply connected, therefore by the Hurewicz theorems $pi_*(Y,X)=0$ for $*leq n$. If $F$ denotes the homotopy fiber of $f$, then $pi_*(Y,X)=pi_*-1(F)$ in all dimensions, hence the previous computation ensures that $F$ is $(n-1)$-connected, so $H_*(F)=0$ for $*leq n-1$. As @abx shows in the comment above, in general $H_n(F)$ won't be trivial. The higher-dimensional Hopf fibrations provide further counterexamples, where even the fiber is simply connected.






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "504"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f325671%2fhomology-of-the-fiber%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    23












    $begingroup$

    As usual, there's no loss of generality in assuming that $f$ is the inclusion of a subspace $Xsubset Y$, replacing $Y$ with the homotopy equivalent mapping cylinder of $f$ if necessary. By your assumptions and the five lemma, $H_*(Y,X)=0$ for $*leq n$, and the pair $(Y,X)$ is simply connected, therefore by the Hurewicz theorems $pi_*(Y,X)=0$ for $*leq n$. If $F$ denotes the homotopy fiber of $f$, then $pi_*(Y,X)=pi_*-1(F)$ in all dimensions, hence the previous computation ensures that $F$ is $(n-1)$-connected, so $H_*(F)=0$ for $*leq n-1$. As @abx shows in the comment above, in general $H_n(F)$ won't be trivial. The higher-dimensional Hopf fibrations provide further counterexamples, where even the fiber is simply connected.






    share|cite|improve this answer











    $endgroup$

















      23












      $begingroup$

      As usual, there's no loss of generality in assuming that $f$ is the inclusion of a subspace $Xsubset Y$, replacing $Y$ with the homotopy equivalent mapping cylinder of $f$ if necessary. By your assumptions and the five lemma, $H_*(Y,X)=0$ for $*leq n$, and the pair $(Y,X)$ is simply connected, therefore by the Hurewicz theorems $pi_*(Y,X)=0$ for $*leq n$. If $F$ denotes the homotopy fiber of $f$, then $pi_*(Y,X)=pi_*-1(F)$ in all dimensions, hence the previous computation ensures that $F$ is $(n-1)$-connected, so $H_*(F)=0$ for $*leq n-1$. As @abx shows in the comment above, in general $H_n(F)$ won't be trivial. The higher-dimensional Hopf fibrations provide further counterexamples, where even the fiber is simply connected.






      share|cite|improve this answer











      $endgroup$















        23












        23








        23





        $begingroup$

        As usual, there's no loss of generality in assuming that $f$ is the inclusion of a subspace $Xsubset Y$, replacing $Y$ with the homotopy equivalent mapping cylinder of $f$ if necessary. By your assumptions and the five lemma, $H_*(Y,X)=0$ for $*leq n$, and the pair $(Y,X)$ is simply connected, therefore by the Hurewicz theorems $pi_*(Y,X)=0$ for $*leq n$. If $F$ denotes the homotopy fiber of $f$, then $pi_*(Y,X)=pi_*-1(F)$ in all dimensions, hence the previous computation ensures that $F$ is $(n-1)$-connected, so $H_*(F)=0$ for $*leq n-1$. As @abx shows in the comment above, in general $H_n(F)$ won't be trivial. The higher-dimensional Hopf fibrations provide further counterexamples, where even the fiber is simply connected.






        share|cite|improve this answer











        $endgroup$



        As usual, there's no loss of generality in assuming that $f$ is the inclusion of a subspace $Xsubset Y$, replacing $Y$ with the homotopy equivalent mapping cylinder of $f$ if necessary. By your assumptions and the five lemma, $H_*(Y,X)=0$ for $*leq n$, and the pair $(Y,X)$ is simply connected, therefore by the Hurewicz theorems $pi_*(Y,X)=0$ for $*leq n$. If $F$ denotes the homotopy fiber of $f$, then $pi_*(Y,X)=pi_*-1(F)$ in all dimensions, hence the previous computation ensures that $F$ is $(n-1)$-connected, so $H_*(F)=0$ for $*leq n-1$. As @abx shows in the comment above, in general $H_n(F)$ won't be trivial. The higher-dimensional Hopf fibrations provide further counterexamples, where even the fiber is simply connected.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Mar 18 at 19:24









        ThiKu

        6,35012137




        6,35012137










        answered Mar 18 at 12:14









        Fernando MuroFernando Muro

        11.9k23465




        11.9k23465



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to MathOverflow!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f325671%2fhomology-of-the-fiber%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Masuk log Menu navigasi

            Identifying “long and narrow” polygons in with PostGISlength and width of polygonWhy postgis st_overlaps reports Qgis' “avoid intersections” generated polygon as overlapping with others?Adjusting polygons to boundary and filling holesDrawing polygons with fixed area?How to remove spikes in Polygons with PostGISDeleting sliver polygons after difference operation in QGIS?Snapping boundaries in PostGISSplit polygon into parts adding attributes based on underlying polygon in QGISSplitting overlap between polygons and assign to nearest polygon using PostGIS?Expanding polygons and clipping at midpoint?Removing Intersection of Buffers in Same Layers

            Старые Смолеговицы Содержание История | География | Демография | Достопримечательности | Примечания | НавигацияHGЯOLHGЯOL41 206 832 01641 606 406 141Административно-территориальное деление Ленинградской области«Переписная оброчная книга Водской пятины 1500 года», С. 793«Карта Ингерманландии: Ивангорода, Яма, Копорья, Нотеборга», по материалам 1676 г.«Генеральная карта провинции Ингерманландии» Э. Белинга и А. Андерсина, 1704 г., составлена по материалам 1678 г.«Географический чертёж над Ижорскою землей со своими городами» Адриана Шонбека 1705 г.Новая и достоверная всей Ингерманландии ланткарта. Грав. А. Ростовцев. СПб., 1727 г.Топографическая карта Санкт-Петербургской губернии. 5-и верстка. Шуберт. 1834 г.Описание Санкт-Петербургской губернии по уездам и станамСпецкарта западной части России Ф. Ф. Шуберта. 1844 г.Алфавитный список селений по уездам и станам С.-Петербургской губернииСписки населённых мест Российской Империи, составленные и издаваемые центральным статистическим комитетом министерства внутренних дел. XXXVII. Санкт-Петербургская губерния. По состоянию на 1862 год. СПб. 1864. С. 203Материалы по статистике народного хозяйства в С.-Петербургской губернии. Вып. IX. Частновладельческое хозяйство в Ямбургском уезде. СПб, 1888, С. 146, С. 2, 7, 54Положение о гербе муниципального образования Курское сельское поселениеСправочник истории административно-территориального деления Ленинградской области.Топографическая карта Ленинградской области, квадрат О-35-23-В (Хотыницы), 1930 г.АрхивированоАдминистративно-территориальное деление Ленинградской области. — Л., 1933, С. 27, 198АрхивированоАдминистративно-экономический справочник по Ленинградской области. — Л., 1936, с. 219АрхивированоАдминистративно-территориальное деление Ленинградской области. — Л., 1966, с. 175АрхивированоАдминистративно-территориальное деление Ленинградской области. — Лениздат, 1973, С. 180АрхивированоАдминистративно-территориальное деление Ленинградской области. — Лениздат, 1990, ISBN 5-289-00612-5, С. 38АрхивированоАдминистративно-территориальное деление Ленинградской области. — СПб., 2007, с. 60АрхивированоКоряков Юрий База данных «Этно-языковой состав населённых пунктов России». Ленинградская область.Административно-территориальное деление Ленинградской области. — СПб, 1997, ISBN 5-86153-055-6, С. 41АрхивированоКультовый комплекс Старые Смолеговицы // Электронная энциклопедия ЭрмитажаПроблемы выявления, изучения и сохранения культовых комплексов с каменными крестами: по материалам работ 2016-2017 гг. в Ленинградской области