Data prepration for logistic regression : Value either “not available” or a “year”2019 Community Moderator ElectionLogistic Regression implementation does not convergeLogistic regression on biased dataIntuition for Logistic Regression PerformanceUpdate statement for Logistic RegressionSimple logistic regression wrong predictionslogistic regressionThe test of randomness was a logistic regression predicting missingness from all other variablesDealing with NaN (missing) values for Logistic Regression- Best practices?Logistic regression in pythonWhy is logistic regression not sigmoidal?

Is it possible for a PC to dismember a humanoid?

Why do bosons tend to occupy the same state?

Will a Schottky diode save my LEDs against reversed voltage?

Short story with a alien planet, government officials must wear exploding medallions

Should I tell management that I intend to leave due to bad software development practices?

Where would I need my direct neural interface to be implanted?

One verb to replace 'be a member of' a club

What's the in-universe reasoning behind sorcerers needing material components?

Is there a hemisphere-neutral way of specifying a season?

GFCI outlets - can they be repaired? Are they really needed at the end of a circuit?

What does “the session was packed” mean in this context?

What does the expression "A Mann!" means

Alternative to sending password over mail?

Different meanings of こわい

Can we compute the area of a quadrilateral with one right angle when we only know the lengths of any three sides?

How do conventional missiles fly?

How to compactly explain secondary and tertiary characters without resorting to stereotypes?

Why is the sentence "Das ist eine Nase" correct?

Am I breaking OOP practice with this architecture?

In 'Revenger,' what does 'cove' come from?

Can compressed videos be decoded back to their uncompresed original format?

Why is it a bad idea to hire a hitman to eliminate most corrupt politicians?

files created then deleted at every second in tmp directory

Office and personal life politics



Data prepration for logistic regression : Value either “not available” or a “year”



2019 Community Moderator ElectionLogistic Regression implementation does not convergeLogistic regression on biased dataIntuition for Logistic Regression PerformanceUpdate statement for Logistic RegressionSimple logistic regression wrong predictionslogistic regressionThe test of randomness was a logistic regression predicting missingness from all other variablesDealing with NaN (missing) values for Logistic Regression- Best practices?Logistic regression in pythonWhy is logistic regression not sigmoidal?










2












$begingroup$


I have some data of houses that have been renovated.



In my data there is one column (among others) that captures this information.



It is either "-1" if there has not been yet any renovation, or the information is the year of renovation like "1995" or "2008".



I would like to apply logistic regression.



However, I do not know how to treat this value.



IMHO it looks like a missing value although it is not a missing information.



So, does anybody have an idea how to put these (unordered) values into relation to the ordered years?



On alternative I could think of is binning the information. Like 1990-1995, 1996-2000,...2016-2019.



Any suggestions are highly appreciated.










share|improve this question









$endgroup$











  • $begingroup$
    If you change value of "year of renovation" to be same "year of construction" for houses that have not been renovated; does it makes sense for this problem ?
    $endgroup$
    – Shamit Verma
    Mar 19 at 7:05










  • $begingroup$
    Yeah, this is a of course a good idea and it also makes sense. In my case this is however, not applicable. Thanks for mentioning
    $endgroup$
    – toom
    Mar 19 at 8:58















2












$begingroup$


I have some data of houses that have been renovated.



In my data there is one column (among others) that captures this information.



It is either "-1" if there has not been yet any renovation, or the information is the year of renovation like "1995" or "2008".



I would like to apply logistic regression.



However, I do not know how to treat this value.



IMHO it looks like a missing value although it is not a missing information.



So, does anybody have an idea how to put these (unordered) values into relation to the ordered years?



On alternative I could think of is binning the information. Like 1990-1995, 1996-2000,...2016-2019.



Any suggestions are highly appreciated.










share|improve this question









$endgroup$











  • $begingroup$
    If you change value of "year of renovation" to be same "year of construction" for houses that have not been renovated; does it makes sense for this problem ?
    $endgroup$
    – Shamit Verma
    Mar 19 at 7:05










  • $begingroup$
    Yeah, this is a of course a good idea and it also makes sense. In my case this is however, not applicable. Thanks for mentioning
    $endgroup$
    – toom
    Mar 19 at 8:58













2












2








2





$begingroup$


I have some data of houses that have been renovated.



In my data there is one column (among others) that captures this information.



It is either "-1" if there has not been yet any renovation, or the information is the year of renovation like "1995" or "2008".



I would like to apply logistic regression.



However, I do not know how to treat this value.



IMHO it looks like a missing value although it is not a missing information.



So, does anybody have an idea how to put these (unordered) values into relation to the ordered years?



On alternative I could think of is binning the information. Like 1990-1995, 1996-2000,...2016-2019.



Any suggestions are highly appreciated.










share|improve this question









$endgroup$




I have some data of houses that have been renovated.



In my data there is one column (among others) that captures this information.



It is either "-1" if there has not been yet any renovation, or the information is the year of renovation like "1995" or "2008".



I would like to apply logistic regression.



However, I do not know how to treat this value.



IMHO it looks like a missing value although it is not a missing information.



So, does anybody have an idea how to put these (unordered) values into relation to the ordered years?



On alternative I could think of is binning the information. Like 1990-1995, 1996-2000,...2016-2019.



Any suggestions are highly appreciated.







logistic-regression missing-data






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked Mar 19 at 6:43









toomtoom

1112




1112











  • $begingroup$
    If you change value of "year of renovation" to be same "year of construction" for houses that have not been renovated; does it makes sense for this problem ?
    $endgroup$
    – Shamit Verma
    Mar 19 at 7:05










  • $begingroup$
    Yeah, this is a of course a good idea and it also makes sense. In my case this is however, not applicable. Thanks for mentioning
    $endgroup$
    – toom
    Mar 19 at 8:58
















  • $begingroup$
    If you change value of "year of renovation" to be same "year of construction" for houses that have not been renovated; does it makes sense for this problem ?
    $endgroup$
    – Shamit Verma
    Mar 19 at 7:05










  • $begingroup$
    Yeah, this is a of course a good idea and it also makes sense. In my case this is however, not applicable. Thanks for mentioning
    $endgroup$
    – toom
    Mar 19 at 8:58















$begingroup$
If you change value of "year of renovation" to be same "year of construction" for houses that have not been renovated; does it makes sense for this problem ?
$endgroup$
– Shamit Verma
Mar 19 at 7:05




$begingroup$
If you change value of "year of renovation" to be same "year of construction" for houses that have not been renovated; does it makes sense for this problem ?
$endgroup$
– Shamit Verma
Mar 19 at 7:05












$begingroup$
Yeah, this is a of course a good idea and it also makes sense. In my case this is however, not applicable. Thanks for mentioning
$endgroup$
– toom
Mar 19 at 8:58




$begingroup$
Yeah, this is a of course a good idea and it also makes sense. In my case this is however, not applicable. Thanks for mentioning
$endgroup$
– toom
Mar 19 at 8:58










1 Answer
1






active

oldest

votes


















4












$begingroup$

First use a binary 0 (no renovation) and 1 (renovation) which works perfect with logistic regression.



Using the exact date is a bad practice. It guides the model in the direction of over-fitting on specific dates. For example, a pattern from 2006 would be specific to that year and would not help the future years. As an alternative, binning on larger spans like 5 years, 10 years (depends on the context) seems as an improvement. For example:



bins = [1990, 2000], [2000, 2010], [2010, 2020]

[1990, 2000] $rightarrow$ (1, 0, 0)

[2000, 2010] $rightarrow$ (0, 1, 0)

[2010, 2020] $rightarrow$ (0, 0, 1)



This approach also has a tendency to over-fit but over a larger time span. Also note that, this way, your model always has an expiration date, since if we pass the last bin in 2021, there is no bin to cover the year. And if we include [2020, 2030] now, there is no data to learn about this bin. And using [2020, forever] is equally useless for future.



I suggest using the age of construction and renovation which are generalizable. A 5 years old house in 2000 could help us infer about a 5 years old house in 2010, 2020, or 2030. For houses with no renovation, age could be set to -1, which works fine with logistic regression (experiment with 0 too). So as a final example:



renovation (has renovation, renovation age)
-1 (0, -1)
2010 in 2019 (1, 9)


Note that repetitive time features are OK. For example, "Spring", "Monday", or "8:00PM", etc.






share|improve this answer











$endgroup$












  • $begingroup$
    Great advice. Thanks for this help. Makes sense :)
    $endgroup$
    – toom
    Mar 19 at 9:00











Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "557"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f47586%2fdata-prepration-for-logistic-regression-value-either-not-available-or-a-yea%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









4












$begingroup$

First use a binary 0 (no renovation) and 1 (renovation) which works perfect with logistic regression.



Using the exact date is a bad practice. It guides the model in the direction of over-fitting on specific dates. For example, a pattern from 2006 would be specific to that year and would not help the future years. As an alternative, binning on larger spans like 5 years, 10 years (depends on the context) seems as an improvement. For example:



bins = [1990, 2000], [2000, 2010], [2010, 2020]

[1990, 2000] $rightarrow$ (1, 0, 0)

[2000, 2010] $rightarrow$ (0, 1, 0)

[2010, 2020] $rightarrow$ (0, 0, 1)



This approach also has a tendency to over-fit but over a larger time span. Also note that, this way, your model always has an expiration date, since if we pass the last bin in 2021, there is no bin to cover the year. And if we include [2020, 2030] now, there is no data to learn about this bin. And using [2020, forever] is equally useless for future.



I suggest using the age of construction and renovation which are generalizable. A 5 years old house in 2000 could help us infer about a 5 years old house in 2010, 2020, or 2030. For houses with no renovation, age could be set to -1, which works fine with logistic regression (experiment with 0 too). So as a final example:



renovation (has renovation, renovation age)
-1 (0, -1)
2010 in 2019 (1, 9)


Note that repetitive time features are OK. For example, "Spring", "Monday", or "8:00PM", etc.






share|improve this answer











$endgroup$












  • $begingroup$
    Great advice. Thanks for this help. Makes sense :)
    $endgroup$
    – toom
    Mar 19 at 9:00















4












$begingroup$

First use a binary 0 (no renovation) and 1 (renovation) which works perfect with logistic regression.



Using the exact date is a bad practice. It guides the model in the direction of over-fitting on specific dates. For example, a pattern from 2006 would be specific to that year and would not help the future years. As an alternative, binning on larger spans like 5 years, 10 years (depends on the context) seems as an improvement. For example:



bins = [1990, 2000], [2000, 2010], [2010, 2020]

[1990, 2000] $rightarrow$ (1, 0, 0)

[2000, 2010] $rightarrow$ (0, 1, 0)

[2010, 2020] $rightarrow$ (0, 0, 1)



This approach also has a tendency to over-fit but over a larger time span. Also note that, this way, your model always has an expiration date, since if we pass the last bin in 2021, there is no bin to cover the year. And if we include [2020, 2030] now, there is no data to learn about this bin. And using [2020, forever] is equally useless for future.



I suggest using the age of construction and renovation which are generalizable. A 5 years old house in 2000 could help us infer about a 5 years old house in 2010, 2020, or 2030. For houses with no renovation, age could be set to -1, which works fine with logistic regression (experiment with 0 too). So as a final example:



renovation (has renovation, renovation age)
-1 (0, -1)
2010 in 2019 (1, 9)


Note that repetitive time features are OK. For example, "Spring", "Monday", or "8:00PM", etc.






share|improve this answer











$endgroup$












  • $begingroup$
    Great advice. Thanks for this help. Makes sense :)
    $endgroup$
    – toom
    Mar 19 at 9:00













4












4








4





$begingroup$

First use a binary 0 (no renovation) and 1 (renovation) which works perfect with logistic regression.



Using the exact date is a bad practice. It guides the model in the direction of over-fitting on specific dates. For example, a pattern from 2006 would be specific to that year and would not help the future years. As an alternative, binning on larger spans like 5 years, 10 years (depends on the context) seems as an improvement. For example:



bins = [1990, 2000], [2000, 2010], [2010, 2020]

[1990, 2000] $rightarrow$ (1, 0, 0)

[2000, 2010] $rightarrow$ (0, 1, 0)

[2010, 2020] $rightarrow$ (0, 0, 1)



This approach also has a tendency to over-fit but over a larger time span. Also note that, this way, your model always has an expiration date, since if we pass the last bin in 2021, there is no bin to cover the year. And if we include [2020, 2030] now, there is no data to learn about this bin. And using [2020, forever] is equally useless for future.



I suggest using the age of construction and renovation which are generalizable. A 5 years old house in 2000 could help us infer about a 5 years old house in 2010, 2020, or 2030. For houses with no renovation, age could be set to -1, which works fine with logistic regression (experiment with 0 too). So as a final example:



renovation (has renovation, renovation age)
-1 (0, -1)
2010 in 2019 (1, 9)


Note that repetitive time features are OK. For example, "Spring", "Monday", or "8:00PM", etc.






share|improve this answer











$endgroup$



First use a binary 0 (no renovation) and 1 (renovation) which works perfect with logistic regression.



Using the exact date is a bad practice. It guides the model in the direction of over-fitting on specific dates. For example, a pattern from 2006 would be specific to that year and would not help the future years. As an alternative, binning on larger spans like 5 years, 10 years (depends on the context) seems as an improvement. For example:



bins = [1990, 2000], [2000, 2010], [2010, 2020]

[1990, 2000] $rightarrow$ (1, 0, 0)

[2000, 2010] $rightarrow$ (0, 1, 0)

[2010, 2020] $rightarrow$ (0, 0, 1)



This approach also has a tendency to over-fit but over a larger time span. Also note that, this way, your model always has an expiration date, since if we pass the last bin in 2021, there is no bin to cover the year. And if we include [2020, 2030] now, there is no data to learn about this bin. And using [2020, forever] is equally useless for future.



I suggest using the age of construction and renovation which are generalizable. A 5 years old house in 2000 could help us infer about a 5 years old house in 2010, 2020, or 2030. For houses with no renovation, age could be set to -1, which works fine with logistic regression (experiment with 0 too). So as a final example:



renovation (has renovation, renovation age)
-1 (0, -1)
2010 in 2019 (1, 9)


Note that repetitive time features are OK. For example, "Spring", "Monday", or "8:00PM", etc.







share|improve this answer














share|improve this answer



share|improve this answer








edited Mar 19 at 12:32

























answered Mar 19 at 7:52









EsmailianEsmailian

2,536318




2,536318











  • $begingroup$
    Great advice. Thanks for this help. Makes sense :)
    $endgroup$
    – toom
    Mar 19 at 9:00
















  • $begingroup$
    Great advice. Thanks for this help. Makes sense :)
    $endgroup$
    – toom
    Mar 19 at 9:00















$begingroup$
Great advice. Thanks for this help. Makes sense :)
$endgroup$
– toom
Mar 19 at 9:00




$begingroup$
Great advice. Thanks for this help. Makes sense :)
$endgroup$
– toom
Mar 19 at 9:00

















draft saved

draft discarded
















































Thanks for contributing an answer to Data Science Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f47586%2fdata-prepration-for-logistic-regression-value-either-not-available-or-a-yea%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Masuk log Menu navigasi

Identifying “long and narrow” polygons in with PostGISlength and width of polygonWhy postgis st_overlaps reports Qgis' “avoid intersections” generated polygon as overlapping with others?Adjusting polygons to boundary and filling holesDrawing polygons with fixed area?How to remove spikes in Polygons with PostGISDeleting sliver polygons after difference operation in QGIS?Snapping boundaries in PostGISSplit polygon into parts adding attributes based on underlying polygon in QGISSplitting overlap between polygons and assign to nearest polygon using PostGIS?Expanding polygons and clipping at midpoint?Removing Intersection of Buffers in Same Layers

Старые Смолеговицы Содержание История | География | Демография | Достопримечательности | Примечания | НавигацияHGЯOLHGЯOL41 206 832 01641 606 406 141Административно-территориальное деление Ленинградской области«Переписная оброчная книга Водской пятины 1500 года», С. 793«Карта Ингерманландии: Ивангорода, Яма, Копорья, Нотеборга», по материалам 1676 г.«Генеральная карта провинции Ингерманландии» Э. Белинга и А. Андерсина, 1704 г., составлена по материалам 1678 г.«Географический чертёж над Ижорскою землей со своими городами» Адриана Шонбека 1705 г.Новая и достоверная всей Ингерманландии ланткарта. Грав. А. Ростовцев. СПб., 1727 г.Топографическая карта Санкт-Петербургской губернии. 5-и верстка. Шуберт. 1834 г.Описание Санкт-Петербургской губернии по уездам и станамСпецкарта западной части России Ф. Ф. Шуберта. 1844 г.Алфавитный список селений по уездам и станам С.-Петербургской губернииСписки населённых мест Российской Империи, составленные и издаваемые центральным статистическим комитетом министерства внутренних дел. XXXVII. Санкт-Петербургская губерния. По состоянию на 1862 год. СПб. 1864. С. 203Материалы по статистике народного хозяйства в С.-Петербургской губернии. Вып. IX. Частновладельческое хозяйство в Ямбургском уезде. СПб, 1888, С. 146, С. 2, 7, 54Положение о гербе муниципального образования Курское сельское поселениеСправочник истории административно-территориального деления Ленинградской области.Топографическая карта Ленинградской области, квадрат О-35-23-В (Хотыницы), 1930 г.АрхивированоАдминистративно-территориальное деление Ленинградской области. — Л., 1933, С. 27, 198АрхивированоАдминистративно-экономический справочник по Ленинградской области. — Л., 1936, с. 219АрхивированоАдминистративно-территориальное деление Ленинградской области. — Л., 1966, с. 175АрхивированоАдминистративно-территориальное деление Ленинградской области. — Лениздат, 1973, С. 180АрхивированоАдминистративно-территориальное деление Ленинградской области. — Лениздат, 1990, ISBN 5-289-00612-5, С. 38АрхивированоАдминистративно-территориальное деление Ленинградской области. — СПб., 2007, с. 60АрхивированоКоряков Юрий База данных «Этно-языковой состав населённых пунктов России». Ленинградская область.Административно-территориальное деление Ленинградской области. — СПб, 1997, ISBN 5-86153-055-6, С. 41АрхивированоКультовый комплекс Старые Смолеговицы // Электронная энциклопедия ЭрмитажаПроблемы выявления, изучения и сохранения культовых комплексов с каменными крестами: по материалам работ 2016-2017 гг. в Ленинградской области