How to determine the greatest d orbital splitting? The Next CEO of Stack OverflowHow do I determine the crystal field splitting for an arbitrary point group?How to determine peroxy oxygen?Iron chemistry: acetates for ebonizing woodHow can the intense color of potassium permanganate be explained with molecular orbital theory?How to determine the magnetic character of heteroleptic complexes?Why do better π-acceptor ligands cause smaller Δ(T) d-orbital splitting?How to Determine An Element's ColourWhat exactly is the d-orbital splitting and how does this affect the colors for transition metal compounds?Pattern to determine the maximum ionic charge for transition elements?Effect of oxidation state on d-orbital splitting

Is wanting to ask what to write an indication that you need to change your story?

How to get from Geneva Airport to Metabief?

"misplaced omit" error when >centering columns

Is it my responsibility to learn a new technology in my own time my employer wants to implement?

Some questions about different axiomatic systems for neighbourhoods

Recycling old answers

Do I need to write [sic] when a number is less than 10 but isn't written out?

I believe this to be a fraud - hired, then asked to cash check and send cash as Bitcoin

Easy to read palindrome checker

The exact meaning of 'Mom made me a sandwich'

Does soap repel water?

Why don't programming languages automatically manage the synchronous/asynchronous problem?

Can MTA send mail via a relay without being told so?

Prepend last line of stdin to entire stdin

Should I cite using beginthebibliography or beginfilecontents*

Does it make sense to invest money on space investigation?

How do I align (1) and (2)?

Why does the flight controls check come before arming the autobrake on the A320?

What is the value of α and β in a triangle?

Newlines in BSD sed vs gsed

Does increasing your ability score affect your main stat?

Is it possible to replace duplicates of a character with one character using tr

Why, when going from special to general relativity, do we just replace partial derivatives with covariant derivatives?

Would a grinding machine be a simple and workable propulsion system for an interplanetary spacecraft?



How to determine the greatest d orbital splitting?



The Next CEO of Stack OverflowHow do I determine the crystal field splitting for an arbitrary point group?How to determine peroxy oxygen?Iron chemistry: acetates for ebonizing woodHow can the intense color of potassium permanganate be explained with molecular orbital theory?How to determine the magnetic character of heteroleptic complexes?Why do better π-acceptor ligands cause smaller Δ(T) d-orbital splitting?How to Determine An Element's ColourWhat exactly is the d-orbital splitting and how does this affect the colors for transition metal compounds?Pattern to determine the maximum ionic charge for transition elements?Effect of oxidation state on d-orbital splitting










2












$begingroup$


This question comes specifically from an IB Chemistry HL Paper 1 in May 2018 TZ1, namely question 8.



Which complex has the greatest d orbital splitting?



It gives 4 Complexes $ce[Fe(H_2O)_6]^2+$, $ce[Fe(H_2O)_6]^3+$, $ce[Co(H_2O)_6]^3+$, $ce[Cr(NH_3)_6]^3+$ and it says that they give the colours green, orange, blue and violet respectively.



Initially I thought that the answer would be $ce[Cr(NH_3)_6]^3+$ because it gives the highest energy light, being violet. However, the answer is given as $ce[Fe(H_2O)_6]^3+$, why is this?










share|improve this question











$endgroup$
















    2












    $begingroup$


    This question comes specifically from an IB Chemistry HL Paper 1 in May 2018 TZ1, namely question 8.



    Which complex has the greatest d orbital splitting?



    It gives 4 Complexes $ce[Fe(H_2O)_6]^2+$, $ce[Fe(H_2O)_6]^3+$, $ce[Co(H_2O)_6]^3+$, $ce[Cr(NH_3)_6]^3+$ and it says that they give the colours green, orange, blue and violet respectively.



    Initially I thought that the answer would be $ce[Cr(NH_3)_6]^3+$ because it gives the highest energy light, being violet. However, the answer is given as $ce[Fe(H_2O)_6]^3+$, why is this?










    share|improve this question











    $endgroup$














      2












      2








      2





      $begingroup$


      This question comes specifically from an IB Chemistry HL Paper 1 in May 2018 TZ1, namely question 8.



      Which complex has the greatest d orbital splitting?



      It gives 4 Complexes $ce[Fe(H_2O)_6]^2+$, $ce[Fe(H_2O)_6]^3+$, $ce[Co(H_2O)_6]^3+$, $ce[Cr(NH_3)_6]^3+$ and it says that they give the colours green, orange, blue and violet respectively.



      Initially I thought that the answer would be $ce[Cr(NH_3)_6]^3+$ because it gives the highest energy light, being violet. However, the answer is given as $ce[Fe(H_2O)_6]^3+$, why is this?










      share|improve this question











      $endgroup$




      This question comes specifically from an IB Chemistry HL Paper 1 in May 2018 TZ1, namely question 8.



      Which complex has the greatest d orbital splitting?



      It gives 4 Complexes $ce[Fe(H_2O)_6]^2+$, $ce[Fe(H_2O)_6]^3+$, $ce[Co(H_2O)_6]^3+$, $ce[Cr(NH_3)_6]^3+$ and it says that they give the colours green, orange, blue and violet respectively.



      Initially I thought that the answer would be $ce[Cr(NH_3)_6]^3+$ because it gives the highest energy light, being violet. However, the answer is given as $ce[Fe(H_2O)_6]^3+$, why is this?







      ions transition-metals oxidation-state color






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Mar 19 at 2:44









      Mathew Mahindaratne

      5,874523




      5,874523










      asked Mar 19 at 1:20









      Anthony PAnthony P

      172




      172




















          1 Answer
          1






          active

          oldest

          votes


















          7












          $begingroup$

          The colour at which the complex absorbs reflects the wavelength of the d–d* electronic transitions. However, this colour is not the same as the transmitted colour (which you see), but is instead complementary to the transmitted colour. Therefore, a complex that appears purple is actually absorbing lower-energy light than a complex that appears red.






          share|improve this answer









          $endgroup$












          • $begingroup$
            Please explain how is it 'complementary'.
            $endgroup$
            – Pan
            Mar 19 at 8:55










          • $begingroup$
            From what I understand, $ce[Cr(NH_3)_6]^3+$ would be absorbing the complementary colour of violet being yellow, which is low energy. However, how does this make any sense because $ceNH_3$ is a strong field ligand which should create a large d orbital splitting, therefore being able to absorb higher energy lights?
            $endgroup$
            – Anthony P
            Mar 20 at 2:06










          • $begingroup$
            @AnthonyP The splitting of the d orbitals is not only a function of the ligand, but also the metal (the atom type as well as the oxidation state). It therefore isn’t correct to only look at the ligand. Apart from that, NH3 isn’t even particularly strong-field; it’s only marginally higher than H2O in the spectrochemical series.
            $endgroup$
            – orthocresol
            Mar 20 at 2:40











          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "431"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fchemistry.stackexchange.com%2fquestions%2f111200%2fhow-to-determine-the-greatest-d-orbital-splitting%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          7












          $begingroup$

          The colour at which the complex absorbs reflects the wavelength of the d–d* electronic transitions. However, this colour is not the same as the transmitted colour (which you see), but is instead complementary to the transmitted colour. Therefore, a complex that appears purple is actually absorbing lower-energy light than a complex that appears red.






          share|improve this answer









          $endgroup$












          • $begingroup$
            Please explain how is it 'complementary'.
            $endgroup$
            – Pan
            Mar 19 at 8:55










          • $begingroup$
            From what I understand, $ce[Cr(NH_3)_6]^3+$ would be absorbing the complementary colour of violet being yellow, which is low energy. However, how does this make any sense because $ceNH_3$ is a strong field ligand which should create a large d orbital splitting, therefore being able to absorb higher energy lights?
            $endgroup$
            – Anthony P
            Mar 20 at 2:06










          • $begingroup$
            @AnthonyP The splitting of the d orbitals is not only a function of the ligand, but also the metal (the atom type as well as the oxidation state). It therefore isn’t correct to only look at the ligand. Apart from that, NH3 isn’t even particularly strong-field; it’s only marginally higher than H2O in the spectrochemical series.
            $endgroup$
            – orthocresol
            Mar 20 at 2:40















          7












          $begingroup$

          The colour at which the complex absorbs reflects the wavelength of the d–d* electronic transitions. However, this colour is not the same as the transmitted colour (which you see), but is instead complementary to the transmitted colour. Therefore, a complex that appears purple is actually absorbing lower-energy light than a complex that appears red.






          share|improve this answer









          $endgroup$












          • $begingroup$
            Please explain how is it 'complementary'.
            $endgroup$
            – Pan
            Mar 19 at 8:55










          • $begingroup$
            From what I understand, $ce[Cr(NH_3)_6]^3+$ would be absorbing the complementary colour of violet being yellow, which is low energy. However, how does this make any sense because $ceNH_3$ is a strong field ligand which should create a large d orbital splitting, therefore being able to absorb higher energy lights?
            $endgroup$
            – Anthony P
            Mar 20 at 2:06










          • $begingroup$
            @AnthonyP The splitting of the d orbitals is not only a function of the ligand, but also the metal (the atom type as well as the oxidation state). It therefore isn’t correct to only look at the ligand. Apart from that, NH3 isn’t even particularly strong-field; it’s only marginally higher than H2O in the spectrochemical series.
            $endgroup$
            – orthocresol
            Mar 20 at 2:40













          7












          7








          7





          $begingroup$

          The colour at which the complex absorbs reflects the wavelength of the d–d* electronic transitions. However, this colour is not the same as the transmitted colour (which you see), but is instead complementary to the transmitted colour. Therefore, a complex that appears purple is actually absorbing lower-energy light than a complex that appears red.






          share|improve this answer









          $endgroup$



          The colour at which the complex absorbs reflects the wavelength of the d–d* electronic transitions. However, this colour is not the same as the transmitted colour (which you see), but is instead complementary to the transmitted colour. Therefore, a complex that appears purple is actually absorbing lower-energy light than a complex that appears red.







          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered Mar 19 at 1:30









          orthocresolorthocresol

          39.8k7114243




          39.8k7114243











          • $begingroup$
            Please explain how is it 'complementary'.
            $endgroup$
            – Pan
            Mar 19 at 8:55










          • $begingroup$
            From what I understand, $ce[Cr(NH_3)_6]^3+$ would be absorbing the complementary colour of violet being yellow, which is low energy. However, how does this make any sense because $ceNH_3$ is a strong field ligand which should create a large d orbital splitting, therefore being able to absorb higher energy lights?
            $endgroup$
            – Anthony P
            Mar 20 at 2:06










          • $begingroup$
            @AnthonyP The splitting of the d orbitals is not only a function of the ligand, but also the metal (the atom type as well as the oxidation state). It therefore isn’t correct to only look at the ligand. Apart from that, NH3 isn’t even particularly strong-field; it’s only marginally higher than H2O in the spectrochemical series.
            $endgroup$
            – orthocresol
            Mar 20 at 2:40
















          • $begingroup$
            Please explain how is it 'complementary'.
            $endgroup$
            – Pan
            Mar 19 at 8:55










          • $begingroup$
            From what I understand, $ce[Cr(NH_3)_6]^3+$ would be absorbing the complementary colour of violet being yellow, which is low energy. However, how does this make any sense because $ceNH_3$ is a strong field ligand which should create a large d orbital splitting, therefore being able to absorb higher energy lights?
            $endgroup$
            – Anthony P
            Mar 20 at 2:06










          • $begingroup$
            @AnthonyP The splitting of the d orbitals is not only a function of the ligand, but also the metal (the atom type as well as the oxidation state). It therefore isn’t correct to only look at the ligand. Apart from that, NH3 isn’t even particularly strong-field; it’s only marginally higher than H2O in the spectrochemical series.
            $endgroup$
            – orthocresol
            Mar 20 at 2:40















          $begingroup$
          Please explain how is it 'complementary'.
          $endgroup$
          – Pan
          Mar 19 at 8:55




          $begingroup$
          Please explain how is it 'complementary'.
          $endgroup$
          – Pan
          Mar 19 at 8:55












          $begingroup$
          From what I understand, $ce[Cr(NH_3)_6]^3+$ would be absorbing the complementary colour of violet being yellow, which is low energy. However, how does this make any sense because $ceNH_3$ is a strong field ligand which should create a large d orbital splitting, therefore being able to absorb higher energy lights?
          $endgroup$
          – Anthony P
          Mar 20 at 2:06




          $begingroup$
          From what I understand, $ce[Cr(NH_3)_6]^3+$ would be absorbing the complementary colour of violet being yellow, which is low energy. However, how does this make any sense because $ceNH_3$ is a strong field ligand which should create a large d orbital splitting, therefore being able to absorb higher energy lights?
          $endgroup$
          – Anthony P
          Mar 20 at 2:06












          $begingroup$
          @AnthonyP The splitting of the d orbitals is not only a function of the ligand, but also the metal (the atom type as well as the oxidation state). It therefore isn’t correct to only look at the ligand. Apart from that, NH3 isn’t even particularly strong-field; it’s only marginally higher than H2O in the spectrochemical series.
          $endgroup$
          – orthocresol
          Mar 20 at 2:40




          $begingroup$
          @AnthonyP The splitting of the d orbitals is not only a function of the ligand, but also the metal (the atom type as well as the oxidation state). It therefore isn’t correct to only look at the ligand. Apart from that, NH3 isn’t even particularly strong-field; it’s only marginally higher than H2O in the spectrochemical series.
          $endgroup$
          – orthocresol
          Mar 20 at 2:40

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Chemistry Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fchemistry.stackexchange.com%2fquestions%2f111200%2fhow-to-determine-the-greatest-d-orbital-splitting%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Identifying “long and narrow” polygons in with PostGISlength and width of polygonWhy postgis st_overlaps reports Qgis' “avoid intersections” generated polygon as overlapping with others?Adjusting polygons to boundary and filling holesDrawing polygons with fixed area?How to remove spikes in Polygons with PostGISDeleting sliver polygons after difference operation in QGIS?Snapping boundaries in PostGISSplit polygon into parts adding attributes based on underlying polygon in QGISSplitting overlap between polygons and assign to nearest polygon using PostGIS?Expanding polygons and clipping at midpoint?Removing Intersection of Buffers in Same Layers

          Masuk log Menu navigasi

          อาณาจักร (ชีววิทยา) ดูเพิ่ม อ้างอิง รายการเลือกการนำทาง10.1086/39456810.5962/bhl.title.447410.1126/science.163.3863.150576276010.1007/BF01796092408502"Phylogenetic structure of the prokaryotic domain: the primary kingdoms"10.1073/pnas.74.11.5088432104270744"Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya"1990PNAS...87.4576W10.1073/pnas.87.12.4576541592112744PubMedJump the queueexpand by handPubMedJump the queueexpand by handPubMedJump the queueexpand by hand"A revised six-kingdom system of life"10.1111/j.1469-185X.1998.tb00030.x9809012"Only six kingdoms of life"10.1098/rspb.2004.2705169172415306349"Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree"10.1098/rsbl.2009.0948288006020031978เพิ่มข้อมูล