An example of incompleteness?Understanding Gödel's Incompleteness TheoremConsequences of Incompleteness.Expressibility; Incompleteness of Peano Arithmeticdiagonalization about incompletenessGödels incompleteness vs incompletenessConcerning the canonical example for Gödel's first incompleteness theoremGödel's Incompleteness Theorems proofGödel's second incompleteness theoremsHow can a formal system ever be non-obviously unsound?What is the purpose of Semantics/Model theory in Mathematical Foundations?

"to be prejudice towards/against someone" vs "to be prejudiced against/towards someone"

Have astronauts in space suits ever taken selfies? If so, how?

To string or not to string

Why can't I see bouncing of a switch on an oscilloscope?

Can a Warlock become Neutral Good?

Service Entrance Breakers Rain Shield

What is the offset in a seaplane's hull?

Do I have a twin with permutated remainders?

Prove that NP is closed under karp reduction?

Theorem, big Paralist and Amsart

Fencing style for blades that can attack from a distance

How to say job offer in Mandarin/Cantonese?

How to find program name(s) of an installed package?

Which models of the Boeing 737 are still in production?

What does it mean to describe someone as a butt steak?

Why doesn't Newton's third law mean a person bounces back to where they started when they hit the ground?

I’m planning on buying a laser printer but concerned about the life cycle of toner in the machine

How to test if a transaction is standard without spending real money?

Why does Kotter return in Welcome Back Kotter?

What is the word for reserving something for yourself before others do?

Risk of getting Chronic Wasting Disease (CWD) in the United States?

Why doesn't H₄O²⁺ exist?

TGV timetables / schedules?

Did Shadowfax go to Valinor?



An example of incompleteness?


Understanding Gödel's Incompleteness TheoremConsequences of Incompleteness.Expressibility; Incompleteness of Peano Arithmeticdiagonalization about incompletenessGödels incompleteness vs incompletenessConcerning the canonical example for Gödel's first incompleteness theoremGödel's Incompleteness Theorems proofGödel's second incompleteness theoremsHow can a formal system ever be non-obviously unsound?What is the purpose of Semantics/Model theory in Mathematical Foundations?













4












$begingroup$


Is it fair to suggest that the fact a base's symbol which would exist in a higher base but is never truly reflected in the base itself is an example(see below) of incompleteness along the ideas of the theorems? My apologies as I'm mostly self-teaching in these areas and feel I've skipped a lot of interim understanding. I don't know logic notation yet so can't follow any raw work. My example would be as follows;



In binary, base 2, we only ever feature the numbers 0 and 1 in all our numerical representations. Despite the fact it's base 2 the numerical symbol of 2 itself never actually appears in this system as this is instead 10.



Is this an example of the theories of incompleteness? Have I just made a random naive or arbitrary correction or is this a fair conclusion of sorts, if even very simplistic? Thanks in advance.










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    "random naive" seems to sum it up pretty well.
    $endgroup$
    – Gerry Myerson
    Mar 19 at 11:16










  • $begingroup$
    The word incompleteness,as it is usually used, doesn't have much to do with symbols
    $endgroup$
    – Max
    Mar 19 at 11:16






  • 2




    $begingroup$
    "Is this an example of the theories of incompleteness?" No. It has nothing at all to do with incompleteness in the logical sense. The binary number system is perfectly capable of expressing all natural numbers. There is nothing surprising in the observation that in any base, there is a limit to what can be expressed with a single digit number. On the other hand, the incompleteness theorems were very surprising indeed.
    $endgroup$
    – John Coleman
    Mar 19 at 11:18







  • 1




    $begingroup$
    Having said that, there is a weak analogy in what you suggest, and analogies, even if weak, can potentially aid intuition, as long as you don't press the analogy too far.
    $endgroup$
    – John Coleman
    Mar 19 at 11:29






  • 2




    $begingroup$
    You are conflating objects and symbols. The number two is the object that has the symbol $2$ as name in the decimal system and the symbol $10$ as name in the binary system.
    $endgroup$
    – Mauro ALLEGRANZA
    Mar 19 at 13:01















4












$begingroup$


Is it fair to suggest that the fact a base's symbol which would exist in a higher base but is never truly reflected in the base itself is an example(see below) of incompleteness along the ideas of the theorems? My apologies as I'm mostly self-teaching in these areas and feel I've skipped a lot of interim understanding. I don't know logic notation yet so can't follow any raw work. My example would be as follows;



In binary, base 2, we only ever feature the numbers 0 and 1 in all our numerical representations. Despite the fact it's base 2 the numerical symbol of 2 itself never actually appears in this system as this is instead 10.



Is this an example of the theories of incompleteness? Have I just made a random naive or arbitrary correction or is this a fair conclusion of sorts, if even very simplistic? Thanks in advance.










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    "random naive" seems to sum it up pretty well.
    $endgroup$
    – Gerry Myerson
    Mar 19 at 11:16










  • $begingroup$
    The word incompleteness,as it is usually used, doesn't have much to do with symbols
    $endgroup$
    – Max
    Mar 19 at 11:16






  • 2




    $begingroup$
    "Is this an example of the theories of incompleteness?" No. It has nothing at all to do with incompleteness in the logical sense. The binary number system is perfectly capable of expressing all natural numbers. There is nothing surprising in the observation that in any base, there is a limit to what can be expressed with a single digit number. On the other hand, the incompleteness theorems were very surprising indeed.
    $endgroup$
    – John Coleman
    Mar 19 at 11:18







  • 1




    $begingroup$
    Having said that, there is a weak analogy in what you suggest, and analogies, even if weak, can potentially aid intuition, as long as you don't press the analogy too far.
    $endgroup$
    – John Coleman
    Mar 19 at 11:29






  • 2




    $begingroup$
    You are conflating objects and symbols. The number two is the object that has the symbol $2$ as name in the decimal system and the symbol $10$ as name in the binary system.
    $endgroup$
    – Mauro ALLEGRANZA
    Mar 19 at 13:01













4












4








4





$begingroup$


Is it fair to suggest that the fact a base's symbol which would exist in a higher base but is never truly reflected in the base itself is an example(see below) of incompleteness along the ideas of the theorems? My apologies as I'm mostly self-teaching in these areas and feel I've skipped a lot of interim understanding. I don't know logic notation yet so can't follow any raw work. My example would be as follows;



In binary, base 2, we only ever feature the numbers 0 and 1 in all our numerical representations. Despite the fact it's base 2 the numerical symbol of 2 itself never actually appears in this system as this is instead 10.



Is this an example of the theories of incompleteness? Have I just made a random naive or arbitrary correction or is this a fair conclusion of sorts, if even very simplistic? Thanks in advance.










share|cite|improve this question











$endgroup$




Is it fair to suggest that the fact a base's symbol which would exist in a higher base but is never truly reflected in the base itself is an example(see below) of incompleteness along the ideas of the theorems? My apologies as I'm mostly self-teaching in these areas and feel I've skipped a lot of interim understanding. I don't know logic notation yet so can't follow any raw work. My example would be as follows;



In binary, base 2, we only ever feature the numbers 0 and 1 in all our numerical representations. Despite the fact it's base 2 the numerical symbol of 2 itself never actually appears in this system as this is instead 10.



Is this an example of the theories of incompleteness? Have I just made a random naive or arbitrary correction or is this a fair conclusion of sorts, if even very simplistic? Thanks in advance.







number-theory logic incompleteness






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 19 at 11:16







Rummy

















asked Mar 19 at 11:06









RummyRummy

245




245







  • 2




    $begingroup$
    "random naive" seems to sum it up pretty well.
    $endgroup$
    – Gerry Myerson
    Mar 19 at 11:16










  • $begingroup$
    The word incompleteness,as it is usually used, doesn't have much to do with symbols
    $endgroup$
    – Max
    Mar 19 at 11:16






  • 2




    $begingroup$
    "Is this an example of the theories of incompleteness?" No. It has nothing at all to do with incompleteness in the logical sense. The binary number system is perfectly capable of expressing all natural numbers. There is nothing surprising in the observation that in any base, there is a limit to what can be expressed with a single digit number. On the other hand, the incompleteness theorems were very surprising indeed.
    $endgroup$
    – John Coleman
    Mar 19 at 11:18







  • 1




    $begingroup$
    Having said that, there is a weak analogy in what you suggest, and analogies, even if weak, can potentially aid intuition, as long as you don't press the analogy too far.
    $endgroup$
    – John Coleman
    Mar 19 at 11:29






  • 2




    $begingroup$
    You are conflating objects and symbols. The number two is the object that has the symbol $2$ as name in the decimal system and the symbol $10$ as name in the binary system.
    $endgroup$
    – Mauro ALLEGRANZA
    Mar 19 at 13:01












  • 2




    $begingroup$
    "random naive" seems to sum it up pretty well.
    $endgroup$
    – Gerry Myerson
    Mar 19 at 11:16










  • $begingroup$
    The word incompleteness,as it is usually used, doesn't have much to do with symbols
    $endgroup$
    – Max
    Mar 19 at 11:16






  • 2




    $begingroup$
    "Is this an example of the theories of incompleteness?" No. It has nothing at all to do with incompleteness in the logical sense. The binary number system is perfectly capable of expressing all natural numbers. There is nothing surprising in the observation that in any base, there is a limit to what can be expressed with a single digit number. On the other hand, the incompleteness theorems were very surprising indeed.
    $endgroup$
    – John Coleman
    Mar 19 at 11:18







  • 1




    $begingroup$
    Having said that, there is a weak analogy in what you suggest, and analogies, even if weak, can potentially aid intuition, as long as you don't press the analogy too far.
    $endgroup$
    – John Coleman
    Mar 19 at 11:29






  • 2




    $begingroup$
    You are conflating objects and symbols. The number two is the object that has the symbol $2$ as name in the decimal system and the symbol $10$ as name in the binary system.
    $endgroup$
    – Mauro ALLEGRANZA
    Mar 19 at 13:01







2




2




$begingroup$
"random naive" seems to sum it up pretty well.
$endgroup$
– Gerry Myerson
Mar 19 at 11:16




$begingroup$
"random naive" seems to sum it up pretty well.
$endgroup$
– Gerry Myerson
Mar 19 at 11:16












$begingroup$
The word incompleteness,as it is usually used, doesn't have much to do with symbols
$endgroup$
– Max
Mar 19 at 11:16




$begingroup$
The word incompleteness,as it is usually used, doesn't have much to do with symbols
$endgroup$
– Max
Mar 19 at 11:16




2




2




$begingroup$
"Is this an example of the theories of incompleteness?" No. It has nothing at all to do with incompleteness in the logical sense. The binary number system is perfectly capable of expressing all natural numbers. There is nothing surprising in the observation that in any base, there is a limit to what can be expressed with a single digit number. On the other hand, the incompleteness theorems were very surprising indeed.
$endgroup$
– John Coleman
Mar 19 at 11:18





$begingroup$
"Is this an example of the theories of incompleteness?" No. It has nothing at all to do with incompleteness in the logical sense. The binary number system is perfectly capable of expressing all natural numbers. There is nothing surprising in the observation that in any base, there is a limit to what can be expressed with a single digit number. On the other hand, the incompleteness theorems were very surprising indeed.
$endgroup$
– John Coleman
Mar 19 at 11:18





1




1




$begingroup$
Having said that, there is a weak analogy in what you suggest, and analogies, even if weak, can potentially aid intuition, as long as you don't press the analogy too far.
$endgroup$
– John Coleman
Mar 19 at 11:29




$begingroup$
Having said that, there is a weak analogy in what you suggest, and analogies, even if weak, can potentially aid intuition, as long as you don't press the analogy too far.
$endgroup$
– John Coleman
Mar 19 at 11:29




2




2




$begingroup$
You are conflating objects and symbols. The number two is the object that has the symbol $2$ as name in the decimal system and the symbol $10$ as name in the binary system.
$endgroup$
– Mauro ALLEGRANZA
Mar 19 at 13:01




$begingroup$
You are conflating objects and symbols. The number two is the object that has the symbol $2$ as name in the decimal system and the symbol $10$ as name in the binary system.
$endgroup$
– Mauro ALLEGRANZA
Mar 19 at 13:01










1 Answer
1






active

oldest

votes


















9












$begingroup$

Incompleteness (in the logical sense) is not about representation of mathematical objects. Rather, it concerns the relation of truth and provability in mathematics, where the latter concepts are understood in a specific technical sense.



There is no good metaphor which fully capture it. Douglas Hofstadter made an attempt in Gödel, Escher, Bach: An Eternal Golden Braid, which I recommend.



My advice is to begin by learning formal logic. Otherwise, it will be like trying to understand quantum physics without learning calculus or any other physics.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Thanks Daniel, now the 6th recommendation to me for that book and ironicially one that was brought up by my friend when I tried to think about this with him.
    $endgroup$
    – Rummy
    Mar 19 at 11:35







  • 1




    $begingroup$
    The book is very good. It was an inspiration for becoming a mathematician.
    $endgroup$
    – Daniel Ahlsén
    Mar 19 at 15:50










  • $begingroup$
    I have started on the Peano axioms/logic which will eventually go a long way. Unfortunately I know a few physicists already and do understand more about quantum physics than I should! I was formally educated in maths and physics until 18 though. Tbh I'm long term chasing maths that naturally crosses over (just for the enjoyment tbh)
    $endgroup$
    – Rummy
    Mar 28 at 7:41










  • $begingroup$
    Are you able to translate the incompleteness problem onto a more plaintext argument for a layman? Thats what im struggling with. I understand it to the extent of essentially that a formally rigid and complete system cannot be accurate because it has no room to deal with undefined terms, whereas an incomplete system can deal with and address unknowns due to iterative processes and thus it can be accurate, but it has to be incomplete because by definition because we cannot define the unknown until its...somewhat known?
    $endgroup$
    – Rummy
    Mar 28 at 7:52











  • $begingroup$
    Incompleteness is not about terms, knowledge or rigidity. It is about the possibility establishing the truth of arithmetical propositions via formal proofs. What it states is the following. If a formal system is such that (1) it's consistent, (2) it is strong enough to describe (a fragment of) Peano arithmetic, then (3) it cannot prove it's own consistency.
    $endgroup$
    – Daniel Ahlsén
    Mar 28 at 8:21











Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3153922%2fan-example-of-incompleteness%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









9












$begingroup$

Incompleteness (in the logical sense) is not about representation of mathematical objects. Rather, it concerns the relation of truth and provability in mathematics, where the latter concepts are understood in a specific technical sense.



There is no good metaphor which fully capture it. Douglas Hofstadter made an attempt in Gödel, Escher, Bach: An Eternal Golden Braid, which I recommend.



My advice is to begin by learning formal logic. Otherwise, it will be like trying to understand quantum physics without learning calculus or any other physics.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Thanks Daniel, now the 6th recommendation to me for that book and ironicially one that was brought up by my friend when I tried to think about this with him.
    $endgroup$
    – Rummy
    Mar 19 at 11:35







  • 1




    $begingroup$
    The book is very good. It was an inspiration for becoming a mathematician.
    $endgroup$
    – Daniel Ahlsén
    Mar 19 at 15:50










  • $begingroup$
    I have started on the Peano axioms/logic which will eventually go a long way. Unfortunately I know a few physicists already and do understand more about quantum physics than I should! I was formally educated in maths and physics until 18 though. Tbh I'm long term chasing maths that naturally crosses over (just for the enjoyment tbh)
    $endgroup$
    – Rummy
    Mar 28 at 7:41










  • $begingroup$
    Are you able to translate the incompleteness problem onto a more plaintext argument for a layman? Thats what im struggling with. I understand it to the extent of essentially that a formally rigid and complete system cannot be accurate because it has no room to deal with undefined terms, whereas an incomplete system can deal with and address unknowns due to iterative processes and thus it can be accurate, but it has to be incomplete because by definition because we cannot define the unknown until its...somewhat known?
    $endgroup$
    – Rummy
    Mar 28 at 7:52











  • $begingroup$
    Incompleteness is not about terms, knowledge or rigidity. It is about the possibility establishing the truth of arithmetical propositions via formal proofs. What it states is the following. If a formal system is such that (1) it's consistent, (2) it is strong enough to describe (a fragment of) Peano arithmetic, then (3) it cannot prove it's own consistency.
    $endgroup$
    – Daniel Ahlsén
    Mar 28 at 8:21















9












$begingroup$

Incompleteness (in the logical sense) is not about representation of mathematical objects. Rather, it concerns the relation of truth and provability in mathematics, where the latter concepts are understood in a specific technical sense.



There is no good metaphor which fully capture it. Douglas Hofstadter made an attempt in Gödel, Escher, Bach: An Eternal Golden Braid, which I recommend.



My advice is to begin by learning formal logic. Otherwise, it will be like trying to understand quantum physics without learning calculus or any other physics.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Thanks Daniel, now the 6th recommendation to me for that book and ironicially one that was brought up by my friend when I tried to think about this with him.
    $endgroup$
    – Rummy
    Mar 19 at 11:35







  • 1




    $begingroup$
    The book is very good. It was an inspiration for becoming a mathematician.
    $endgroup$
    – Daniel Ahlsén
    Mar 19 at 15:50










  • $begingroup$
    I have started on the Peano axioms/logic which will eventually go a long way. Unfortunately I know a few physicists already and do understand more about quantum physics than I should! I was formally educated in maths and physics until 18 though. Tbh I'm long term chasing maths that naturally crosses over (just for the enjoyment tbh)
    $endgroup$
    – Rummy
    Mar 28 at 7:41










  • $begingroup$
    Are you able to translate the incompleteness problem onto a more plaintext argument for a layman? Thats what im struggling with. I understand it to the extent of essentially that a formally rigid and complete system cannot be accurate because it has no room to deal with undefined terms, whereas an incomplete system can deal with and address unknowns due to iterative processes and thus it can be accurate, but it has to be incomplete because by definition because we cannot define the unknown until its...somewhat known?
    $endgroup$
    – Rummy
    Mar 28 at 7:52











  • $begingroup$
    Incompleteness is not about terms, knowledge or rigidity. It is about the possibility establishing the truth of arithmetical propositions via formal proofs. What it states is the following. If a formal system is such that (1) it's consistent, (2) it is strong enough to describe (a fragment of) Peano arithmetic, then (3) it cannot prove it's own consistency.
    $endgroup$
    – Daniel Ahlsén
    Mar 28 at 8:21













9












9








9





$begingroup$

Incompleteness (in the logical sense) is not about representation of mathematical objects. Rather, it concerns the relation of truth and provability in mathematics, where the latter concepts are understood in a specific technical sense.



There is no good metaphor which fully capture it. Douglas Hofstadter made an attempt in Gödel, Escher, Bach: An Eternal Golden Braid, which I recommend.



My advice is to begin by learning formal logic. Otherwise, it will be like trying to understand quantum physics without learning calculus or any other physics.






share|cite|improve this answer











$endgroup$



Incompleteness (in the logical sense) is not about representation of mathematical objects. Rather, it concerns the relation of truth and provability in mathematics, where the latter concepts are understood in a specific technical sense.



There is no good metaphor which fully capture it. Douglas Hofstadter made an attempt in Gödel, Escher, Bach: An Eternal Golden Braid, which I recommend.



My advice is to begin by learning formal logic. Otherwise, it will be like trying to understand quantum physics without learning calculus or any other physics.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Mar 19 at 11:46

























answered Mar 19 at 11:29









Daniel AhlsénDaniel Ahlsén

3965




3965











  • $begingroup$
    Thanks Daniel, now the 6th recommendation to me for that book and ironicially one that was brought up by my friend when I tried to think about this with him.
    $endgroup$
    – Rummy
    Mar 19 at 11:35







  • 1




    $begingroup$
    The book is very good. It was an inspiration for becoming a mathematician.
    $endgroup$
    – Daniel Ahlsén
    Mar 19 at 15:50










  • $begingroup$
    I have started on the Peano axioms/logic which will eventually go a long way. Unfortunately I know a few physicists already and do understand more about quantum physics than I should! I was formally educated in maths and physics until 18 though. Tbh I'm long term chasing maths that naturally crosses over (just for the enjoyment tbh)
    $endgroup$
    – Rummy
    Mar 28 at 7:41










  • $begingroup$
    Are you able to translate the incompleteness problem onto a more plaintext argument for a layman? Thats what im struggling with. I understand it to the extent of essentially that a formally rigid and complete system cannot be accurate because it has no room to deal with undefined terms, whereas an incomplete system can deal with and address unknowns due to iterative processes and thus it can be accurate, but it has to be incomplete because by definition because we cannot define the unknown until its...somewhat known?
    $endgroup$
    – Rummy
    Mar 28 at 7:52











  • $begingroup$
    Incompleteness is not about terms, knowledge or rigidity. It is about the possibility establishing the truth of arithmetical propositions via formal proofs. What it states is the following. If a formal system is such that (1) it's consistent, (2) it is strong enough to describe (a fragment of) Peano arithmetic, then (3) it cannot prove it's own consistency.
    $endgroup$
    – Daniel Ahlsén
    Mar 28 at 8:21
















  • $begingroup$
    Thanks Daniel, now the 6th recommendation to me for that book and ironicially one that was brought up by my friend when I tried to think about this with him.
    $endgroup$
    – Rummy
    Mar 19 at 11:35







  • 1




    $begingroup$
    The book is very good. It was an inspiration for becoming a mathematician.
    $endgroup$
    – Daniel Ahlsén
    Mar 19 at 15:50










  • $begingroup$
    I have started on the Peano axioms/logic which will eventually go a long way. Unfortunately I know a few physicists already and do understand more about quantum physics than I should! I was formally educated in maths and physics until 18 though. Tbh I'm long term chasing maths that naturally crosses over (just for the enjoyment tbh)
    $endgroup$
    – Rummy
    Mar 28 at 7:41










  • $begingroup$
    Are you able to translate the incompleteness problem onto a more plaintext argument for a layman? Thats what im struggling with. I understand it to the extent of essentially that a formally rigid and complete system cannot be accurate because it has no room to deal with undefined terms, whereas an incomplete system can deal with and address unknowns due to iterative processes and thus it can be accurate, but it has to be incomplete because by definition because we cannot define the unknown until its...somewhat known?
    $endgroup$
    – Rummy
    Mar 28 at 7:52











  • $begingroup$
    Incompleteness is not about terms, knowledge or rigidity. It is about the possibility establishing the truth of arithmetical propositions via formal proofs. What it states is the following. If a formal system is such that (1) it's consistent, (2) it is strong enough to describe (a fragment of) Peano arithmetic, then (3) it cannot prove it's own consistency.
    $endgroup$
    – Daniel Ahlsén
    Mar 28 at 8:21















$begingroup$
Thanks Daniel, now the 6th recommendation to me for that book and ironicially one that was brought up by my friend when I tried to think about this with him.
$endgroup$
– Rummy
Mar 19 at 11:35





$begingroup$
Thanks Daniel, now the 6th recommendation to me for that book and ironicially one that was brought up by my friend when I tried to think about this with him.
$endgroup$
– Rummy
Mar 19 at 11:35





1




1




$begingroup$
The book is very good. It was an inspiration for becoming a mathematician.
$endgroup$
– Daniel Ahlsén
Mar 19 at 15:50




$begingroup$
The book is very good. It was an inspiration for becoming a mathematician.
$endgroup$
– Daniel Ahlsén
Mar 19 at 15:50












$begingroup$
I have started on the Peano axioms/logic which will eventually go a long way. Unfortunately I know a few physicists already and do understand more about quantum physics than I should! I was formally educated in maths and physics until 18 though. Tbh I'm long term chasing maths that naturally crosses over (just for the enjoyment tbh)
$endgroup$
– Rummy
Mar 28 at 7:41




$begingroup$
I have started on the Peano axioms/logic which will eventually go a long way. Unfortunately I know a few physicists already and do understand more about quantum physics than I should! I was formally educated in maths and physics until 18 though. Tbh I'm long term chasing maths that naturally crosses over (just for the enjoyment tbh)
$endgroup$
– Rummy
Mar 28 at 7:41












$begingroup$
Are you able to translate the incompleteness problem onto a more plaintext argument for a layman? Thats what im struggling with. I understand it to the extent of essentially that a formally rigid and complete system cannot be accurate because it has no room to deal with undefined terms, whereas an incomplete system can deal with and address unknowns due to iterative processes and thus it can be accurate, but it has to be incomplete because by definition because we cannot define the unknown until its...somewhat known?
$endgroup$
– Rummy
Mar 28 at 7:52





$begingroup$
Are you able to translate the incompleteness problem onto a more plaintext argument for a layman? Thats what im struggling with. I understand it to the extent of essentially that a formally rigid and complete system cannot be accurate because it has no room to deal with undefined terms, whereas an incomplete system can deal with and address unknowns due to iterative processes and thus it can be accurate, but it has to be incomplete because by definition because we cannot define the unknown until its...somewhat known?
$endgroup$
– Rummy
Mar 28 at 7:52













$begingroup$
Incompleteness is not about terms, knowledge or rigidity. It is about the possibility establishing the truth of arithmetical propositions via formal proofs. What it states is the following. If a formal system is such that (1) it's consistent, (2) it is strong enough to describe (a fragment of) Peano arithmetic, then (3) it cannot prove it's own consistency.
$endgroup$
– Daniel Ahlsén
Mar 28 at 8:21




$begingroup$
Incompleteness is not about terms, knowledge or rigidity. It is about the possibility establishing the truth of arithmetical propositions via formal proofs. What it states is the following. If a formal system is such that (1) it's consistent, (2) it is strong enough to describe (a fragment of) Peano arithmetic, then (3) it cannot prove it's own consistency.
$endgroup$
– Daniel Ahlsén
Mar 28 at 8:21

















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3153922%2fan-example-of-incompleteness%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Masuk log Menu navigasi

Identifying “long and narrow” polygons in with PostGISlength and width of polygonWhy postgis st_overlaps reports Qgis' “avoid intersections” generated polygon as overlapping with others?Adjusting polygons to boundary and filling holesDrawing polygons with fixed area?How to remove spikes in Polygons with PostGISDeleting sliver polygons after difference operation in QGIS?Snapping boundaries in PostGISSplit polygon into parts adding attributes based on underlying polygon in QGISSplitting overlap between polygons and assign to nearest polygon using PostGIS?Expanding polygons and clipping at midpoint?Removing Intersection of Buffers in Same Layers

Старые Смолеговицы Содержание История | География | Демография | Достопримечательности | Примечания | НавигацияHGЯOLHGЯOL41 206 832 01641 606 406 141Административно-территориальное деление Ленинградской области«Переписная оброчная книга Водской пятины 1500 года», С. 793«Карта Ингерманландии: Ивангорода, Яма, Копорья, Нотеборга», по материалам 1676 г.«Генеральная карта провинции Ингерманландии» Э. Белинга и А. Андерсина, 1704 г., составлена по материалам 1678 г.«Географический чертёж над Ижорскою землей со своими городами» Адриана Шонбека 1705 г.Новая и достоверная всей Ингерманландии ланткарта. Грав. А. Ростовцев. СПб., 1727 г.Топографическая карта Санкт-Петербургской губернии. 5-и верстка. Шуберт. 1834 г.Описание Санкт-Петербургской губернии по уездам и станамСпецкарта западной части России Ф. Ф. Шуберта. 1844 г.Алфавитный список селений по уездам и станам С.-Петербургской губернииСписки населённых мест Российской Империи, составленные и издаваемые центральным статистическим комитетом министерства внутренних дел. XXXVII. Санкт-Петербургская губерния. По состоянию на 1862 год. СПб. 1864. С. 203Материалы по статистике народного хозяйства в С.-Петербургской губернии. Вып. IX. Частновладельческое хозяйство в Ямбургском уезде. СПб, 1888, С. 146, С. 2, 7, 54Положение о гербе муниципального образования Курское сельское поселениеСправочник истории административно-территориального деления Ленинградской области.Топографическая карта Ленинградской области, квадрат О-35-23-В (Хотыницы), 1930 г.АрхивированоАдминистративно-территориальное деление Ленинградской области. — Л., 1933, С. 27, 198АрхивированоАдминистративно-экономический справочник по Ленинградской области. — Л., 1936, с. 219АрхивированоАдминистративно-территориальное деление Ленинградской области. — Л., 1966, с. 175АрхивированоАдминистративно-территориальное деление Ленинградской области. — Лениздат, 1973, С. 180АрхивированоАдминистративно-территориальное деление Ленинградской области. — Лениздат, 1990, ISBN 5-289-00612-5, С. 38АрхивированоАдминистративно-территориальное деление Ленинградской области. — СПб., 2007, с. 60АрхивированоКоряков Юрий База данных «Этно-языковой состав населённых пунктов России». Ленинградская область.Административно-территориальное деление Ленинградской области. — СПб, 1997, ISBN 5-86153-055-6, С. 41АрхивированоКультовый комплекс Старые Смолеговицы // Электронная энциклопедия ЭрмитажаПроблемы выявления, изучения и сохранения культовых комплексов с каменными крестами: по материалам работ 2016-2017 гг. в Ленинградской области