Does convergence of polynomials imply that of its coefficients?Differentiation continuous iff domain is finite dimensionalConvergent Series in a dual spaceShow convergence of a sequence of continuous functions $f_n$ to a continuous function $f$ does not imply convergence of corresponding integrals.Monotone Convergence Theorem for Riemann Integrable functionsShowing that $displaystyleundersetnrightarrow inftylimint_0^1 f_n = int_0^1undersetnrightarrow inftylim f_n$What is the 'right' topology for this space?For a piecewise function $g_n(t)$, find $g(t)=limlimits_nrightarrow inftyg_n(t)$.Prove that the restriction of linear map in $B(c_0)$ is in $B(ell^p)$Moving limit into sup normShowing that a linear map does not achieve its norm

Homology of the fiber

What are the consequences of changing the number of hours in a day?

How to test the sharpness of a knife?

Are hand made posters acceptable in Academia?

Would mining huge amounts of resources on the Moon change its orbit?

Why is indicated airspeed rather than ground speed used during the takeoff roll?

When should a starting writer get his own webpage?

Is xar preinstalled on macOS?

Unable to get newly inserted Product's Id using After Plugin for Catalog Product save controller method

I got the following comment from a reputed math journal. What does it mean?

Print last inputted byte

Why is participating in the European Parliamentary elections used as a threat?

PTIJ: Where did Achashverosh's years wander off to?

Weird lines in Microsoft Word

Do native speakers use "ultima" and "proxima" frequently in spoken English?

Should I be concerned about student access to a test bank?

Exit shell with shortcut (not typing exit) that closes session properly

Turning a hard to access nut?

Was World War I a war of liberals against authoritarians?

Why is this tree refusing to shed its dead leaves?

Friend wants my recommendation but I don't want to give it to him

PTIJ: Why do we make a Lulav holder?

Why I don't get the wanted width of tcbox?

Does fire aspect on a sword, destroy mob drops?



Does convergence of polynomials imply that of its coefficients?


Differentiation continuous iff domain is finite dimensionalConvergent Series in a dual spaceShow convergence of a sequence of continuous functions $f_n$ to a continuous function $f$ does not imply convergence of corresponding integrals.Monotone Convergence Theorem for Riemann Integrable functionsShowing that $displaystyleundersetnrightarrow inftylimint_0^1 f_n = int_0^1undersetnrightarrow inftylim f_n$What is the 'right' topology for this space?For a piecewise function $g_n(t)$, find $g(t)=limlimits_nrightarrow inftyg_n(t)$.Prove that the restriction of linear map in $B(c_0)$ is in $B(ell^p)$Moving limit into sup normShowing that a linear map does not achieve its norm













21












$begingroup$


Let $p_n$ be a sequence of polynomials and $f$ a continuous function
on $[0,1]$ such that $intlimits_0^1|p_n(x)-f(x)|dxto 0$.
Let $c_n,k$ be the coefficient of $x^k$ in $p_n(x)$. Can we conclude
that $undersetnrightarrow infty lim c_n,k$ exists for each $k$?.



What I know so far: if the degrees of $p_n^prime s$ are bounded then
this is true. In fact, we can replace $L^1$ convergence by convergence in
any norm on $C[0,1]$; to see this we just have to note that for fixed $N$, $%
sum_k=0^Nc_ix^irightarrow (c_0,c_1,...,c_N)$
is a
linear map on a finite-dimensional subspace and hence it is continuous. My
guess is that the result fails when there is no restriction on the degrees.
But if $p_n(z)$ converges uniformly in some disk around $0$ in the complex
plane then the conclusion holds. To construct a counterexample we have to
avoid this situation. Maybe there is a very simple example but I haven't been
to find one. Thank you for investing your time on this.










share|cite|improve this question











$endgroup$
















    21












    $begingroup$


    Let $p_n$ be a sequence of polynomials and $f$ a continuous function
    on $[0,1]$ such that $intlimits_0^1|p_n(x)-f(x)|dxto 0$.
    Let $c_n,k$ be the coefficient of $x^k$ in $p_n(x)$. Can we conclude
    that $undersetnrightarrow infty lim c_n,k$ exists for each $k$?.



    What I know so far: if the degrees of $p_n^prime s$ are bounded then
    this is true. In fact, we can replace $L^1$ convergence by convergence in
    any norm on $C[0,1]$; to see this we just have to note that for fixed $N$, $%
    sum_k=0^Nc_ix^irightarrow (c_0,c_1,...,c_N)$
    is a
    linear map on a finite-dimensional subspace and hence it is continuous. My
    guess is that the result fails when there is no restriction on the degrees.
    But if $p_n(z)$ converges uniformly in some disk around $0$ in the complex
    plane then the conclusion holds. To construct a counterexample we have to
    avoid this situation. Maybe there is a very simple example but I haven't been
    to find one. Thank you for investing your time on this.










    share|cite|improve this question











    $endgroup$














      21












      21








      21


      1



      $begingroup$


      Let $p_n$ be a sequence of polynomials and $f$ a continuous function
      on $[0,1]$ such that $intlimits_0^1|p_n(x)-f(x)|dxto 0$.
      Let $c_n,k$ be the coefficient of $x^k$ in $p_n(x)$. Can we conclude
      that $undersetnrightarrow infty lim c_n,k$ exists for each $k$?.



      What I know so far: if the degrees of $p_n^prime s$ are bounded then
      this is true. In fact, we can replace $L^1$ convergence by convergence in
      any norm on $C[0,1]$; to see this we just have to note that for fixed $N$, $%
      sum_k=0^Nc_ix^irightarrow (c_0,c_1,...,c_N)$
      is a
      linear map on a finite-dimensional subspace and hence it is continuous. My
      guess is that the result fails when there is no restriction on the degrees.
      But if $p_n(z)$ converges uniformly in some disk around $0$ in the complex
      plane then the conclusion holds. To construct a counterexample we have to
      avoid this situation. Maybe there is a very simple example but I haven't been
      to find one. Thank you for investing your time on this.










      share|cite|improve this question











      $endgroup$




      Let $p_n$ be a sequence of polynomials and $f$ a continuous function
      on $[0,1]$ such that $intlimits_0^1|p_n(x)-f(x)|dxto 0$.
      Let $c_n,k$ be the coefficient of $x^k$ in $p_n(x)$. Can we conclude
      that $undersetnrightarrow infty lim c_n,k$ exists for each $k$?.



      What I know so far: if the degrees of $p_n^prime s$ are bounded then
      this is true. In fact, we can replace $L^1$ convergence by convergence in
      any norm on $C[0,1]$; to see this we just have to note that for fixed $N$, $%
      sum_k=0^Nc_ix^irightarrow (c_0,c_1,...,c_N)$
      is a
      linear map on a finite-dimensional subspace and hence it is continuous. My
      guess is that the result fails when there is no restriction on the degrees.
      But if $p_n(z)$ converges uniformly in some disk around $0$ in the complex
      plane then the conclusion holds. To construct a counterexample we have to
      avoid this situation. Maybe there is a very simple example but I haven't been
      to find one. Thank you for investing your time on this.







      functional-analysis






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 15 hours ago









      YuiTo Cheng

      2,0592637




      2,0592637










      asked 21 hours ago









      Kavi Rama MurthyKavi Rama Murthy

      68.2k53069




      68.2k53069




















          1 Answer
          1






          active

          oldest

          votes


















          26












          $begingroup$

          Consider the sequence of polynomials



          $$
          p_n(x)=left{
          beginarray@ll@
          (1-x)^n, & textif nequiv 0 mod 2 \
          x^n, & textif nequiv 1 mod 2
          endarrayright.
          $$



          Then $p_n(x)$ converges to $0$ but the constant term is oscillating.






          share|cite|improve this answer









          $endgroup$








          • 6




            $begingroup$
            Thanks. I just noticed that teh conclusion fails even with uniform convergence. Consider $x(1-x)p_n(x)$ with the $p_n$' you have defined and look at the coefficient of $x$.
            $endgroup$
            – Kavi Rama Murthy
            21 hours ago






          • 3




            $begingroup$
            @KaviRamaMurthy: Or, use Ethan's sequence with the interval $[1/4, 3/4]$, on which it converges uniformly.
            $endgroup$
            – Nate Eldredge
            5 hours ago











          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3152512%2fdoes-convergence-of-polynomials-imply-that-of-its-coefficients%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          26












          $begingroup$

          Consider the sequence of polynomials



          $$
          p_n(x)=left{
          beginarray@ll@
          (1-x)^n, & textif nequiv 0 mod 2 \
          x^n, & textif nequiv 1 mod 2
          endarrayright.
          $$



          Then $p_n(x)$ converges to $0$ but the constant term is oscillating.






          share|cite|improve this answer









          $endgroup$








          • 6




            $begingroup$
            Thanks. I just noticed that teh conclusion fails even with uniform convergence. Consider $x(1-x)p_n(x)$ with the $p_n$' you have defined and look at the coefficient of $x$.
            $endgroup$
            – Kavi Rama Murthy
            21 hours ago






          • 3




            $begingroup$
            @KaviRamaMurthy: Or, use Ethan's sequence with the interval $[1/4, 3/4]$, on which it converges uniformly.
            $endgroup$
            – Nate Eldredge
            5 hours ago
















          26












          $begingroup$

          Consider the sequence of polynomials



          $$
          p_n(x)=left{
          beginarray@ll@
          (1-x)^n, & textif nequiv 0 mod 2 \
          x^n, & textif nequiv 1 mod 2
          endarrayright.
          $$



          Then $p_n(x)$ converges to $0$ but the constant term is oscillating.






          share|cite|improve this answer









          $endgroup$








          • 6




            $begingroup$
            Thanks. I just noticed that teh conclusion fails even with uniform convergence. Consider $x(1-x)p_n(x)$ with the $p_n$' you have defined and look at the coefficient of $x$.
            $endgroup$
            – Kavi Rama Murthy
            21 hours ago






          • 3




            $begingroup$
            @KaviRamaMurthy: Or, use Ethan's sequence with the interval $[1/4, 3/4]$, on which it converges uniformly.
            $endgroup$
            – Nate Eldredge
            5 hours ago














          26












          26








          26





          $begingroup$

          Consider the sequence of polynomials



          $$
          p_n(x)=left{
          beginarray@ll@
          (1-x)^n, & textif nequiv 0 mod 2 \
          x^n, & textif nequiv 1 mod 2
          endarrayright.
          $$



          Then $p_n(x)$ converges to $0$ but the constant term is oscillating.






          share|cite|improve this answer









          $endgroup$



          Consider the sequence of polynomials



          $$
          p_n(x)=left{
          beginarray@ll@
          (1-x)^n, & textif nequiv 0 mod 2 \
          x^n, & textif nequiv 1 mod 2
          endarrayright.
          $$



          Then $p_n(x)$ converges to $0$ but the constant term is oscillating.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 21 hours ago









          Ethan MacBroughEthan MacBrough

          981617




          981617







          • 6




            $begingroup$
            Thanks. I just noticed that teh conclusion fails even with uniform convergence. Consider $x(1-x)p_n(x)$ with the $p_n$' you have defined and look at the coefficient of $x$.
            $endgroup$
            – Kavi Rama Murthy
            21 hours ago






          • 3




            $begingroup$
            @KaviRamaMurthy: Or, use Ethan's sequence with the interval $[1/4, 3/4]$, on which it converges uniformly.
            $endgroup$
            – Nate Eldredge
            5 hours ago













          • 6




            $begingroup$
            Thanks. I just noticed that teh conclusion fails even with uniform convergence. Consider $x(1-x)p_n(x)$ with the $p_n$' you have defined and look at the coefficient of $x$.
            $endgroup$
            – Kavi Rama Murthy
            21 hours ago






          • 3




            $begingroup$
            @KaviRamaMurthy: Or, use Ethan's sequence with the interval $[1/4, 3/4]$, on which it converges uniformly.
            $endgroup$
            – Nate Eldredge
            5 hours ago








          6




          6




          $begingroup$
          Thanks. I just noticed that teh conclusion fails even with uniform convergence. Consider $x(1-x)p_n(x)$ with the $p_n$' you have defined and look at the coefficient of $x$.
          $endgroup$
          – Kavi Rama Murthy
          21 hours ago




          $begingroup$
          Thanks. I just noticed that teh conclusion fails even with uniform convergence. Consider $x(1-x)p_n(x)$ with the $p_n$' you have defined and look at the coefficient of $x$.
          $endgroup$
          – Kavi Rama Murthy
          21 hours ago




          3




          3




          $begingroup$
          @KaviRamaMurthy: Or, use Ethan's sequence with the interval $[1/4, 3/4]$, on which it converges uniformly.
          $endgroup$
          – Nate Eldredge
          5 hours ago





          $begingroup$
          @KaviRamaMurthy: Or, use Ethan's sequence with the interval $[1/4, 3/4]$, on which it converges uniformly.
          $endgroup$
          – Nate Eldredge
          5 hours ago


















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3152512%2fdoes-convergence-of-polynomials-imply-that-of-its-coefficients%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Masuk log Menu navigasi

          Identifying “long and narrow” polygons in with PostGISlength and width of polygonWhy postgis st_overlaps reports Qgis' “avoid intersections” generated polygon as overlapping with others?Adjusting polygons to boundary and filling holesDrawing polygons with fixed area?How to remove spikes in Polygons with PostGISDeleting sliver polygons after difference operation in QGIS?Snapping boundaries in PostGISSplit polygon into parts adding attributes based on underlying polygon in QGISSplitting overlap between polygons and assign to nearest polygon using PostGIS?Expanding polygons and clipping at midpoint?Removing Intersection of Buffers in Same Layers

          Старые Смолеговицы Содержание История | География | Демография | Достопримечательности | Примечания | НавигацияHGЯOLHGЯOL41 206 832 01641 606 406 141Административно-территориальное деление Ленинградской области«Переписная оброчная книга Водской пятины 1500 года», С. 793«Карта Ингерманландии: Ивангорода, Яма, Копорья, Нотеборга», по материалам 1676 г.«Генеральная карта провинции Ингерманландии» Э. Белинга и А. Андерсина, 1704 г., составлена по материалам 1678 г.«Географический чертёж над Ижорскою землей со своими городами» Адриана Шонбека 1705 г.Новая и достоверная всей Ингерманландии ланткарта. Грав. А. Ростовцев. СПб., 1727 г.Топографическая карта Санкт-Петербургской губернии. 5-и верстка. Шуберт. 1834 г.Описание Санкт-Петербургской губернии по уездам и станамСпецкарта западной части России Ф. Ф. Шуберта. 1844 г.Алфавитный список селений по уездам и станам С.-Петербургской губернииСписки населённых мест Российской Империи, составленные и издаваемые центральным статистическим комитетом министерства внутренних дел. XXXVII. Санкт-Петербургская губерния. По состоянию на 1862 год. СПб. 1864. С. 203Материалы по статистике народного хозяйства в С.-Петербургской губернии. Вып. IX. Частновладельческое хозяйство в Ямбургском уезде. СПб, 1888, С. 146, С. 2, 7, 54Положение о гербе муниципального образования Курское сельское поселениеСправочник истории административно-территориального деления Ленинградской области.Топографическая карта Ленинградской области, квадрат О-35-23-В (Хотыницы), 1930 г.АрхивированоАдминистративно-территориальное деление Ленинградской области. — Л., 1933, С. 27, 198АрхивированоАдминистративно-экономический справочник по Ленинградской области. — Л., 1936, с. 219АрхивированоАдминистративно-территориальное деление Ленинградской области. — Л., 1966, с. 175АрхивированоАдминистративно-территориальное деление Ленинградской области. — Лениздат, 1973, С. 180АрхивированоАдминистративно-территориальное деление Ленинградской области. — Лениздат, 1990, ISBN 5-289-00612-5, С. 38АрхивированоАдминистративно-территориальное деление Ленинградской области. — СПб., 2007, с. 60АрхивированоКоряков Юрий База данных «Этно-языковой состав населённых пунктов России». Ленинградская область.Административно-территориальное деление Ленинградской области. — СПб, 1997, ISBN 5-86153-055-6, С. 41АрхивированоКультовый комплекс Старые Смолеговицы // Электронная энциклопедия ЭрмитажаПроблемы выявления, изучения и сохранения культовых комплексов с каменными крестами: по материалам работ 2016-2017 гг. в Ленинградской области