What is the smallest number n> 5 so that 5 ^ n ends with “3125”?How to prove that if $aequiv b pmodkn$ then $a^kequiv b^k pmodk^2n$Horizontal tank with hemispherical ends depth to capacity calculationDoes the smallest real number that satisfies $2^xge bx$ have logarithmic order?Determine the smallest number POptimization, find the dimensions of the poster with the smallest areaIs $s(t) = 1/(1+t^2)$ a bounded function? If so, find the smallest $M$Continous function approximating the precision of a number.What is the smallest value of this sequence?Find the smallest real number $agt 0$ for which the equation $a^x=x$ has no real solutionsGiven a point A (3,4) What is the smallest segment passing through A and makes a right triangle with the coordinates$f(n) =$ the smallest prime factor of $n$. Prove that the number of solutions to the equation $f(x) = 2016$.

Verb "geeitet" in an old scientific text

What matters more when it comes to book covers? Is it ‘professional quality’ or relevancy?

Why do money exchangers give different rates to different bills?

What property of a BJT transistor makes it an amplifier?

Why was the battle set up *outside* Winterfell?

Understanding trademark infringements in a world where many dictionary words are trademarks?

How should I tell my manager I'm not paying for an optional after work event I'm not going to?

What is the difference between 反日 and 日本たたき?

On which topic did Indiana Jones write his doctoral thesis?

What is the most remote airport from the center of the city it supposedly serves?

Can there be a single technologically advanced nation, in a continent full of non-technologically advanced nations?

Out of scope work duties and resignation

How was the quadratic formula created?

Why did the Apollo 13 crew extend the LM landing gear?

Upside-Down Pyramid Addition...REVERSED!

Would the Disguise Self spell be able to reveal hidden birthmarks/tattoos (of the person they're disguised as) to a character?

Why Isn’t SQL More Refactorable?

Which module had more 'comfort' in terms of living space, the Lunar Module or the Command module?

How can I support myself financially as a 17 year old with a loan?

Purpose of のは in this sentence?

Point of the the Dothraki's attack in GoT S8E3?

Does a card have a keyword if it has the same effect as said keyword?

Why didn't the check-in agent recognize my long term visa?

How I can I roll a number of non-digital dice to get a random number between 1 and 150?



What is the smallest number n> 5 so that 5 ^ n ends with “3125”?


How to prove that if $aequiv b pmodkn$ then $a^kequiv b^k pmodk^2n$Horizontal tank with hemispherical ends depth to capacity calculationDoes the smallest real number that satisfies $2^xge bx$ have logarithmic order?Determine the smallest number POptimization, find the dimensions of the poster with the smallest areaIs $s(t) = 1/(1+t^2)$ a bounded function? If so, find the smallest $M$Continous function approximating the precision of a number.What is the smallest value of this sequence?Find the smallest real number $agt 0$ for which the equation $a^x=x$ has no real solutionsGiven a point A (3,4) What is the smallest segment passing through A and makes a right triangle with the coordinates$f(n) =$ the smallest prime factor of $n$. Prove that the number of solutions to the equation $f(x) = 2016$.













2












$begingroup$


What is the smallest number n> 5 so that 5 ^ n ends with "3125"?



What other examples are there?










share|cite|improve this question









$endgroup$







  • 1




    $begingroup$
    What is your take on this?
    $endgroup$
    – ADITYA PRAKASH
    Mar 20 at 20:01






  • 1




    $begingroup$
    Why not just list them out and find it?
    $endgroup$
    – Jair Taylor
    Mar 20 at 20:02






  • 4




    $begingroup$
    Why not just do it? It's not $1$ because $5^1=5$. It's not $2$ because $5^2 = 25$. What's to keep you from just continuing?
    $endgroup$
    – fleablood
    Mar 20 at 20:20










  • $begingroup$
    The answer to "What is the smallest such n>5?" is easy, so you might as well retitle the question "What are all n>5 such that...?"
    $endgroup$
    – smci
    Mar 20 at 23:55
















2












$begingroup$


What is the smallest number n> 5 so that 5 ^ n ends with "3125"?



What other examples are there?










share|cite|improve this question









$endgroup$







  • 1




    $begingroup$
    What is your take on this?
    $endgroup$
    – ADITYA PRAKASH
    Mar 20 at 20:01






  • 1




    $begingroup$
    Why not just list them out and find it?
    $endgroup$
    – Jair Taylor
    Mar 20 at 20:02






  • 4




    $begingroup$
    Why not just do it? It's not $1$ because $5^1=5$. It's not $2$ because $5^2 = 25$. What's to keep you from just continuing?
    $endgroup$
    – fleablood
    Mar 20 at 20:20










  • $begingroup$
    The answer to "What is the smallest such n>5?" is easy, so you might as well retitle the question "What are all n>5 such that...?"
    $endgroup$
    – smci
    Mar 20 at 23:55














2












2








2


1



$begingroup$


What is the smallest number n> 5 so that 5 ^ n ends with "3125"?



What other examples are there?










share|cite|improve this question









$endgroup$




What is the smallest number n> 5 so that 5 ^ n ends with "3125"?



What other examples are there?







calculus






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Mar 20 at 19:59









Catherine Cooper Catherine Cooper

287




287







  • 1




    $begingroup$
    What is your take on this?
    $endgroup$
    – ADITYA PRAKASH
    Mar 20 at 20:01






  • 1




    $begingroup$
    Why not just list them out and find it?
    $endgroup$
    – Jair Taylor
    Mar 20 at 20:02






  • 4




    $begingroup$
    Why not just do it? It's not $1$ because $5^1=5$. It's not $2$ because $5^2 = 25$. What's to keep you from just continuing?
    $endgroup$
    – fleablood
    Mar 20 at 20:20










  • $begingroup$
    The answer to "What is the smallest such n>5?" is easy, so you might as well retitle the question "What are all n>5 such that...?"
    $endgroup$
    – smci
    Mar 20 at 23:55













  • 1




    $begingroup$
    What is your take on this?
    $endgroup$
    – ADITYA PRAKASH
    Mar 20 at 20:01






  • 1




    $begingroup$
    Why not just list them out and find it?
    $endgroup$
    – Jair Taylor
    Mar 20 at 20:02






  • 4




    $begingroup$
    Why not just do it? It's not $1$ because $5^1=5$. It's not $2$ because $5^2 = 25$. What's to keep you from just continuing?
    $endgroup$
    – fleablood
    Mar 20 at 20:20










  • $begingroup$
    The answer to "What is the smallest such n>5?" is easy, so you might as well retitle the question "What are all n>5 such that...?"
    $endgroup$
    – smci
    Mar 20 at 23:55








1




1




$begingroup$
What is your take on this?
$endgroup$
– ADITYA PRAKASH
Mar 20 at 20:01




$begingroup$
What is your take on this?
$endgroup$
– ADITYA PRAKASH
Mar 20 at 20:01




1




1




$begingroup$
Why not just list them out and find it?
$endgroup$
– Jair Taylor
Mar 20 at 20:02




$begingroup$
Why not just list them out and find it?
$endgroup$
– Jair Taylor
Mar 20 at 20:02




4




4




$begingroup$
Why not just do it? It's not $1$ because $5^1=5$. It's not $2$ because $5^2 = 25$. What's to keep you from just continuing?
$endgroup$
– fleablood
Mar 20 at 20:20




$begingroup$
Why not just do it? It's not $1$ because $5^1=5$. It's not $2$ because $5^2 = 25$. What's to keep you from just continuing?
$endgroup$
– fleablood
Mar 20 at 20:20












$begingroup$
The answer to "What is the smallest such n>5?" is easy, so you might as well retitle the question "What are all n>5 such that...?"
$endgroup$
– smci
Mar 20 at 23:55





$begingroup$
The answer to "What is the smallest such n>5?" is easy, so you might as well retitle the question "What are all n>5 such that...?"
$endgroup$
– smci
Mar 20 at 23:55











4 Answers
4






active

oldest

votes


















4












$begingroup$

Hint: $5^n equiv 5^5 mod 10^4$ if and only if $5^n equiv 5^5 mod 2^4$. What is the multiplicative order of $5$ mod $16$?






share|cite|improve this answer









$endgroup$




















    6












    $begingroup$


    So, we are looking for all $n>5$ for which $5^nequiv 3125=5^5mod 10000$.




    Note that the following equivalence holds for $n>5$:$$5^nequiv 5^5mod 10000\iff \5^n-4equiv 5mod 16\iff\5^n-5equiv 1mod 16$$Define $mtriangleq n-5ge 1$. Then all the $m$s for which $5^mequiv 1mod 16$ holds are $$m=4kquad,quad kin Bbb N$$this is because $5^4=625equiv 1mod 16$ and therefore $$5^4kequiv5^4k-4equivcdots equiv 5^4equiv 1mod 16$$



    Conclusion




    All $n>5$s for which $5^n$ ends up with $3125$ can be found from $$n=4k+5quad,quad kin Bbb N$$ and the smallest such $n$ is 9.







    share|cite|improve this answer









    $endgroup$




















      2












      $begingroup$

      Well
      $$5^9=1953125$$
      so the answer is $9$. In fact
      $$5^nequiv 5^n-4 mod10^4$$
      For $nge 8$, so any value of $5^5+4k$ where $kinmathbbN$ has the last four digits $3125$.






      share|cite|improve this answer











      $endgroup$












      • $begingroup$
        Why not $5^5 = 3125$.
        $endgroup$
        – fleablood
        Mar 20 at 20:20






      • 2




        $begingroup$
        The question states that $ngt5$
        $endgroup$
        – Peter Foreman
        Mar 20 at 20:22


















      0












      $begingroup$

      Hint $, 5^large 5+N! bmod 10^large 4 = 5^large 5(5^largecolor#c00 N! bmod 2^large 4).,$ Now recall $, beginalign 5, &equiv 1!pmod! color#c004 \ Rightarrow 5^largecolor#c00 4!&equiv 1^largecolor#c00 4!!!! pmod!color#c004^large 2endalign$






      share|cite|improve this answer











      $endgroup$













        Your Answer








        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "69"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader:
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        ,
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );













        draft saved

        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3155943%2fwhat-is-the-smallest-number-n-5-so-that-5-n-ends-with-3125%23new-answer', 'question_page');

        );

        Post as a guest















        Required, but never shown

























        4 Answers
        4






        active

        oldest

        votes








        4 Answers
        4






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        4












        $begingroup$

        Hint: $5^n equiv 5^5 mod 10^4$ if and only if $5^n equiv 5^5 mod 2^4$. What is the multiplicative order of $5$ mod $16$?






        share|cite|improve this answer









        $endgroup$

















          4












          $begingroup$

          Hint: $5^n equiv 5^5 mod 10^4$ if and only if $5^n equiv 5^5 mod 2^4$. What is the multiplicative order of $5$ mod $16$?






          share|cite|improve this answer









          $endgroup$















            4












            4








            4





            $begingroup$

            Hint: $5^n equiv 5^5 mod 10^4$ if and only if $5^n equiv 5^5 mod 2^4$. What is the multiplicative order of $5$ mod $16$?






            share|cite|improve this answer









            $endgroup$



            Hint: $5^n equiv 5^5 mod 10^4$ if and only if $5^n equiv 5^5 mod 2^4$. What is the multiplicative order of $5$ mod $16$?







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Mar 20 at 20:12









            Robert IsraelRobert Israel

            334k23224485




            334k23224485





















                6












                $begingroup$


                So, we are looking for all $n>5$ for which $5^nequiv 3125=5^5mod 10000$.




                Note that the following equivalence holds for $n>5$:$$5^nequiv 5^5mod 10000\iff \5^n-4equiv 5mod 16\iff\5^n-5equiv 1mod 16$$Define $mtriangleq n-5ge 1$. Then all the $m$s for which $5^mequiv 1mod 16$ holds are $$m=4kquad,quad kin Bbb N$$this is because $5^4=625equiv 1mod 16$ and therefore $$5^4kequiv5^4k-4equivcdots equiv 5^4equiv 1mod 16$$



                Conclusion




                All $n>5$s for which $5^n$ ends up with $3125$ can be found from $$n=4k+5quad,quad kin Bbb N$$ and the smallest such $n$ is 9.







                share|cite|improve this answer









                $endgroup$

















                  6












                  $begingroup$


                  So, we are looking for all $n>5$ for which $5^nequiv 3125=5^5mod 10000$.




                  Note that the following equivalence holds for $n>5$:$$5^nequiv 5^5mod 10000\iff \5^n-4equiv 5mod 16\iff\5^n-5equiv 1mod 16$$Define $mtriangleq n-5ge 1$. Then all the $m$s for which $5^mequiv 1mod 16$ holds are $$m=4kquad,quad kin Bbb N$$this is because $5^4=625equiv 1mod 16$ and therefore $$5^4kequiv5^4k-4equivcdots equiv 5^4equiv 1mod 16$$



                  Conclusion




                  All $n>5$s for which $5^n$ ends up with $3125$ can be found from $$n=4k+5quad,quad kin Bbb N$$ and the smallest such $n$ is 9.







                  share|cite|improve this answer









                  $endgroup$















                    6












                    6








                    6





                    $begingroup$


                    So, we are looking for all $n>5$ for which $5^nequiv 3125=5^5mod 10000$.




                    Note that the following equivalence holds for $n>5$:$$5^nequiv 5^5mod 10000\iff \5^n-4equiv 5mod 16\iff\5^n-5equiv 1mod 16$$Define $mtriangleq n-5ge 1$. Then all the $m$s for which $5^mequiv 1mod 16$ holds are $$m=4kquad,quad kin Bbb N$$this is because $5^4=625equiv 1mod 16$ and therefore $$5^4kequiv5^4k-4equivcdots equiv 5^4equiv 1mod 16$$



                    Conclusion




                    All $n>5$s for which $5^n$ ends up with $3125$ can be found from $$n=4k+5quad,quad kin Bbb N$$ and the smallest such $n$ is 9.







                    share|cite|improve this answer









                    $endgroup$




                    So, we are looking for all $n>5$ for which $5^nequiv 3125=5^5mod 10000$.




                    Note that the following equivalence holds for $n>5$:$$5^nequiv 5^5mod 10000\iff \5^n-4equiv 5mod 16\iff\5^n-5equiv 1mod 16$$Define $mtriangleq n-5ge 1$. Then all the $m$s for which $5^mequiv 1mod 16$ holds are $$m=4kquad,quad kin Bbb N$$this is because $5^4=625equiv 1mod 16$ and therefore $$5^4kequiv5^4k-4equivcdots equiv 5^4equiv 1mod 16$$



                    Conclusion




                    All $n>5$s for which $5^n$ ends up with $3125$ can be found from $$n=4k+5quad,quad kin Bbb N$$ and the smallest such $n$ is 9.








                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Mar 20 at 20:17









                    Mostafa AyazMostafa Ayaz

                    18.1k31040




                    18.1k31040





















                        2












                        $begingroup$

                        Well
                        $$5^9=1953125$$
                        so the answer is $9$. In fact
                        $$5^nequiv 5^n-4 mod10^4$$
                        For $nge 8$, so any value of $5^5+4k$ where $kinmathbbN$ has the last four digits $3125$.






                        share|cite|improve this answer











                        $endgroup$












                        • $begingroup$
                          Why not $5^5 = 3125$.
                          $endgroup$
                          – fleablood
                          Mar 20 at 20:20






                        • 2




                          $begingroup$
                          The question states that $ngt5$
                          $endgroup$
                          – Peter Foreman
                          Mar 20 at 20:22















                        2












                        $begingroup$

                        Well
                        $$5^9=1953125$$
                        so the answer is $9$. In fact
                        $$5^nequiv 5^n-4 mod10^4$$
                        For $nge 8$, so any value of $5^5+4k$ where $kinmathbbN$ has the last four digits $3125$.






                        share|cite|improve this answer











                        $endgroup$












                        • $begingroup$
                          Why not $5^5 = 3125$.
                          $endgroup$
                          – fleablood
                          Mar 20 at 20:20






                        • 2




                          $begingroup$
                          The question states that $ngt5$
                          $endgroup$
                          – Peter Foreman
                          Mar 20 at 20:22













                        2












                        2








                        2





                        $begingroup$

                        Well
                        $$5^9=1953125$$
                        so the answer is $9$. In fact
                        $$5^nequiv 5^n-4 mod10^4$$
                        For $nge 8$, so any value of $5^5+4k$ where $kinmathbbN$ has the last four digits $3125$.






                        share|cite|improve this answer











                        $endgroup$



                        Well
                        $$5^9=1953125$$
                        so the answer is $9$. In fact
                        $$5^nequiv 5^n-4 mod10^4$$
                        For $nge 8$, so any value of $5^5+4k$ where $kinmathbbN$ has the last four digits $3125$.







                        share|cite|improve this answer














                        share|cite|improve this answer



                        share|cite|improve this answer








                        edited Mar 20 at 20:16

























                        answered Mar 20 at 20:11









                        Peter ForemanPeter Foreman

                        9,1981321




                        9,1981321











                        • $begingroup$
                          Why not $5^5 = 3125$.
                          $endgroup$
                          – fleablood
                          Mar 20 at 20:20






                        • 2




                          $begingroup$
                          The question states that $ngt5$
                          $endgroup$
                          – Peter Foreman
                          Mar 20 at 20:22
















                        • $begingroup$
                          Why not $5^5 = 3125$.
                          $endgroup$
                          – fleablood
                          Mar 20 at 20:20






                        • 2




                          $begingroup$
                          The question states that $ngt5$
                          $endgroup$
                          – Peter Foreman
                          Mar 20 at 20:22















                        $begingroup$
                        Why not $5^5 = 3125$.
                        $endgroup$
                        – fleablood
                        Mar 20 at 20:20




                        $begingroup$
                        Why not $5^5 = 3125$.
                        $endgroup$
                        – fleablood
                        Mar 20 at 20:20




                        2




                        2




                        $begingroup$
                        The question states that $ngt5$
                        $endgroup$
                        – Peter Foreman
                        Mar 20 at 20:22




                        $begingroup$
                        The question states that $ngt5$
                        $endgroup$
                        – Peter Foreman
                        Mar 20 at 20:22











                        0












                        $begingroup$

                        Hint $, 5^large 5+N! bmod 10^large 4 = 5^large 5(5^largecolor#c00 N! bmod 2^large 4).,$ Now recall $, beginalign 5, &equiv 1!pmod! color#c004 \ Rightarrow 5^largecolor#c00 4!&equiv 1^largecolor#c00 4!!!! pmod!color#c004^large 2endalign$






                        share|cite|improve this answer











                        $endgroup$

















                          0












                          $begingroup$

                          Hint $, 5^large 5+N! bmod 10^large 4 = 5^large 5(5^largecolor#c00 N! bmod 2^large 4).,$ Now recall $, beginalign 5, &equiv 1!pmod! color#c004 \ Rightarrow 5^largecolor#c00 4!&equiv 1^largecolor#c00 4!!!! pmod!color#c004^large 2endalign$






                          share|cite|improve this answer











                          $endgroup$















                            0












                            0








                            0





                            $begingroup$

                            Hint $, 5^large 5+N! bmod 10^large 4 = 5^large 5(5^largecolor#c00 N! bmod 2^large 4).,$ Now recall $, beginalign 5, &equiv 1!pmod! color#c004 \ Rightarrow 5^largecolor#c00 4!&equiv 1^largecolor#c00 4!!!! pmod!color#c004^large 2endalign$






                            share|cite|improve this answer











                            $endgroup$



                            Hint $, 5^large 5+N! bmod 10^large 4 = 5^large 5(5^largecolor#c00 N! bmod 2^large 4).,$ Now recall $, beginalign 5, &equiv 1!pmod! color#c004 \ Rightarrow 5^largecolor#c00 4!&equiv 1^largecolor#c00 4!!!! pmod!color#c004^large 2endalign$







                            share|cite|improve this answer














                            share|cite|improve this answer



                            share|cite|improve this answer








                            edited Mar 20 at 22:24

























                            answered Mar 20 at 21:34









                            Bill DubuqueBill Dubuque

                            215k29198660




                            215k29198660



























                                draft saved

                                draft discarded
















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid


                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.

                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3155943%2fwhat-is-the-smallest-number-n-5-so-that-5-n-ends-with-3125%23new-answer', 'question_page');

                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Masuk log Menu navigasi

                                Identifying “long and narrow” polygons in with PostGISlength and width of polygonWhy postgis st_overlaps reports Qgis' “avoid intersections” generated polygon as overlapping with others?Adjusting polygons to boundary and filling holesDrawing polygons with fixed area?How to remove spikes in Polygons with PostGISDeleting sliver polygons after difference operation in QGIS?Snapping boundaries in PostGISSplit polygon into parts adding attributes based on underlying polygon in QGISSplitting overlap between polygons and assign to nearest polygon using PostGIS?Expanding polygons and clipping at midpoint?Removing Intersection of Buffers in Same Layers

                                Старые Смолеговицы Содержание История | География | Демография | Достопримечательности | Примечания | НавигацияHGЯOLHGЯOL41 206 832 01641 606 406 141Административно-территориальное деление Ленинградской области«Переписная оброчная книга Водской пятины 1500 года», С. 793«Карта Ингерманландии: Ивангорода, Яма, Копорья, Нотеборга», по материалам 1676 г.«Генеральная карта провинции Ингерманландии» Э. Белинга и А. Андерсина, 1704 г., составлена по материалам 1678 г.«Географический чертёж над Ижорскою землей со своими городами» Адриана Шонбека 1705 г.Новая и достоверная всей Ингерманландии ланткарта. Грав. А. Ростовцев. СПб., 1727 г.Топографическая карта Санкт-Петербургской губернии. 5-и верстка. Шуберт. 1834 г.Описание Санкт-Петербургской губернии по уездам и станамСпецкарта западной части России Ф. Ф. Шуберта. 1844 г.Алфавитный список селений по уездам и станам С.-Петербургской губернииСписки населённых мест Российской Империи, составленные и издаваемые центральным статистическим комитетом министерства внутренних дел. XXXVII. Санкт-Петербургская губерния. По состоянию на 1862 год. СПб. 1864. С. 203Материалы по статистике народного хозяйства в С.-Петербургской губернии. Вып. IX. Частновладельческое хозяйство в Ямбургском уезде. СПб, 1888, С. 146, С. 2, 7, 54Положение о гербе муниципального образования Курское сельское поселениеСправочник истории административно-территориального деления Ленинградской области.Топографическая карта Ленинградской области, квадрат О-35-23-В (Хотыницы), 1930 г.АрхивированоАдминистративно-территориальное деление Ленинградской области. — Л., 1933, С. 27, 198АрхивированоАдминистративно-экономический справочник по Ленинградской области. — Л., 1936, с. 219АрхивированоАдминистративно-территориальное деление Ленинградской области. — Л., 1966, с. 175АрхивированоАдминистративно-территориальное деление Ленинградской области. — Лениздат, 1973, С. 180АрхивированоАдминистративно-территориальное деление Ленинградской области. — Лениздат, 1990, ISBN 5-289-00612-5, С. 38АрхивированоАдминистративно-территориальное деление Ленинградской области. — СПб., 2007, с. 60АрхивированоКоряков Юрий База данных «Этно-языковой состав населённых пунктов России». Ленинградская область.Административно-территориальное деление Ленинградской области. — СПб, 1997, ISBN 5-86153-055-6, С. 41АрхивированоКультовый комплекс Старые Смолеговицы // Электронная энциклопедия ЭрмитажаПроблемы выявления, изучения и сохранения культовых комплексов с каменными крестами: по материалам работ 2016-2017 гг. в Ленинградской области