What is $ sin(x)+sin(x−π)+sin(x+π) $?How to solve $sin x +cos x = 1$?solve $3sintheta+4costheta=0$Trig identity $fraccos xsec x + fracsin xcsc x = csc^2x - cot^2x$solving the integral $sqrtsin(y)(4-y)$What identity was used in this Trigonometry problem?Use Trig Identities to solve $sin x cos^4 x+cos^6 x$Solve $cos 2x - sin 2x = sqrt 3cos 4x$Trigonometric simple equationThe lengths of a triangle's sides are consecutive integers. If the largest angle is twice the smallest angle, find the cosine of the smallest angle?Trouble proving the trigonometric identity $frac1-2sin(x)sec(x)=fraccos(3x)1+2sin(x)$

How do I deal with an unproductive colleague in a small company?

"You are your self first supporter", a more proper way to say it

Can a vampire attack twice with their claws using multiattack?

What does the "remote control" for a QF-4 look like?

Convert two switches to a dual stack, and add outlet - possible here?

Why can't I see bouncing of switch on oscilloscope screen?

What's that red-plus icon near a text?

Paid for article while in US on F-1 visa?

Replacing matching entries in one column of a file by another column from a different file

meaning of に in 本当に?

Why is Minecraft giving an OpenGL error?

Approximately how much travel time was saved by the opening of the Suez Canal in 1869?

Why does Kotter return in Welcome Back Kotter?

Could an aircraft fly or hover using only jets of compressed air?

What is the word for reserving something for yourself before others do?

Can I ask the recruiters in my resume to put the reason why I am rejected?

dbcc cleantable batch size explanation

Revoked SSL certificate

How to format long polynomial?

A newer friend of my brother's gave him a load of baseball cards that are supposedly extremely valuable. Is this a scam?

Modeling an IP Address

Why doesn't H₄O²⁺ exist?

Perform and show arithmetic with LuaLaTeX

What would happen to a modern skyscraper if it rains micro blackholes?



What is $ sin(x)+sin(x−π)+sin(x+π) $?


How to solve $sin x +cos x = 1$?solve $3sintheta+4costheta=0$Trig identity $fraccos xsec x + fracsin xcsc x = csc^2x - cot^2x$solving the integral $sqrtsin(y)(4-y)$What identity was used in this Trigonometry problem?Use Trig Identities to solve $sin x cos^4 x+cos^6 x$Solve $cos 2x - sin 2x = sqrt 3cos 4x$Trigonometric simple equationThe lengths of a triangle's sides are consecutive integers. If the largest angle is twice the smallest angle, find the cosine of the smallest angle?Trouble proving the trigonometric identity $frac1-2sin(x)sec(x)=fraccos(3x)1+2sin(x)$













4












$begingroup$


So I have this trig question:




$ sin(x)+sin(x−π)+sin(x+π) = $ _____




The answer is $- sin(x)$



I can't figure out how to solve it.



Any help?










share|cite|improve this question











$endgroup$











  • $begingroup$
    Do you know the formula of sine of a sum?
    $endgroup$
    – J. W. Tanner
    Mar 19 at 13:18










  • $begingroup$
    Yep I do.......
    $endgroup$
    – Arkilo
    Mar 19 at 13:19










  • $begingroup$
    @Afzal Then what does that formula tell you about $sin(x-pi)$? What about $sin(x + pi)$?
    $endgroup$
    – Arthur
    Mar 19 at 13:20










  • $begingroup$
    sin(x) cos (π) - sin (π) cos(x) + sin (x) cos(π) + sin(π)cos(x) , 2nd and fourth one cancels out and then you have sin(x) cos (π) + sin (x) cos(π), if I add em then I just get 2 sin(x) 2cos(π). How do I reduce it down from this point
    $endgroup$
    – Arkilo
    Mar 19 at 13:24






  • 1




    $begingroup$
    Do you know $sin(pi)$ and $cos(pi)$?
    $endgroup$
    – J. W. Tanner
    Mar 19 at 13:25















4












$begingroup$


So I have this trig question:




$ sin(x)+sin(x−π)+sin(x+π) = $ _____




The answer is $- sin(x)$



I can't figure out how to solve it.



Any help?










share|cite|improve this question











$endgroup$











  • $begingroup$
    Do you know the formula of sine of a sum?
    $endgroup$
    – J. W. Tanner
    Mar 19 at 13:18










  • $begingroup$
    Yep I do.......
    $endgroup$
    – Arkilo
    Mar 19 at 13:19










  • $begingroup$
    @Afzal Then what does that formula tell you about $sin(x-pi)$? What about $sin(x + pi)$?
    $endgroup$
    – Arthur
    Mar 19 at 13:20










  • $begingroup$
    sin(x) cos (π) - sin (π) cos(x) + sin (x) cos(π) + sin(π)cos(x) , 2nd and fourth one cancels out and then you have sin(x) cos (π) + sin (x) cos(π), if I add em then I just get 2 sin(x) 2cos(π). How do I reduce it down from this point
    $endgroup$
    – Arkilo
    Mar 19 at 13:24






  • 1




    $begingroup$
    Do you know $sin(pi)$ and $cos(pi)$?
    $endgroup$
    – J. W. Tanner
    Mar 19 at 13:25













4












4








4


2



$begingroup$


So I have this trig question:




$ sin(x)+sin(x−π)+sin(x+π) = $ _____




The answer is $- sin(x)$



I can't figure out how to solve it.



Any help?










share|cite|improve this question











$endgroup$




So I have this trig question:




$ sin(x)+sin(x−π)+sin(x+π) = $ _____




The answer is $- sin(x)$



I can't figure out how to solve it.



Any help?







trigonometry






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 20 at 1:18









J. W. Tanner

4,4691320




4,4691320










asked Mar 19 at 13:16









ArkiloArkilo

555




555











  • $begingroup$
    Do you know the formula of sine of a sum?
    $endgroup$
    – J. W. Tanner
    Mar 19 at 13:18










  • $begingroup$
    Yep I do.......
    $endgroup$
    – Arkilo
    Mar 19 at 13:19










  • $begingroup$
    @Afzal Then what does that formula tell you about $sin(x-pi)$? What about $sin(x + pi)$?
    $endgroup$
    – Arthur
    Mar 19 at 13:20










  • $begingroup$
    sin(x) cos (π) - sin (π) cos(x) + sin (x) cos(π) + sin(π)cos(x) , 2nd and fourth one cancels out and then you have sin(x) cos (π) + sin (x) cos(π), if I add em then I just get 2 sin(x) 2cos(π). How do I reduce it down from this point
    $endgroup$
    – Arkilo
    Mar 19 at 13:24






  • 1




    $begingroup$
    Do you know $sin(pi)$ and $cos(pi)$?
    $endgroup$
    – J. W. Tanner
    Mar 19 at 13:25
















  • $begingroup$
    Do you know the formula of sine of a sum?
    $endgroup$
    – J. W. Tanner
    Mar 19 at 13:18










  • $begingroup$
    Yep I do.......
    $endgroup$
    – Arkilo
    Mar 19 at 13:19










  • $begingroup$
    @Afzal Then what does that formula tell you about $sin(x-pi)$? What about $sin(x + pi)$?
    $endgroup$
    – Arthur
    Mar 19 at 13:20










  • $begingroup$
    sin(x) cos (π) - sin (π) cos(x) + sin (x) cos(π) + sin(π)cos(x) , 2nd and fourth one cancels out and then you have sin(x) cos (π) + sin (x) cos(π), if I add em then I just get 2 sin(x) 2cos(π). How do I reduce it down from this point
    $endgroup$
    – Arkilo
    Mar 19 at 13:24






  • 1




    $begingroup$
    Do you know $sin(pi)$ and $cos(pi)$?
    $endgroup$
    – J. W. Tanner
    Mar 19 at 13:25















$begingroup$
Do you know the formula of sine of a sum?
$endgroup$
– J. W. Tanner
Mar 19 at 13:18




$begingroup$
Do you know the formula of sine of a sum?
$endgroup$
– J. W. Tanner
Mar 19 at 13:18












$begingroup$
Yep I do.......
$endgroup$
– Arkilo
Mar 19 at 13:19




$begingroup$
Yep I do.......
$endgroup$
– Arkilo
Mar 19 at 13:19












$begingroup$
@Afzal Then what does that formula tell you about $sin(x-pi)$? What about $sin(x + pi)$?
$endgroup$
– Arthur
Mar 19 at 13:20




$begingroup$
@Afzal Then what does that formula tell you about $sin(x-pi)$? What about $sin(x + pi)$?
$endgroup$
– Arthur
Mar 19 at 13:20












$begingroup$
sin(x) cos (π) - sin (π) cos(x) + sin (x) cos(π) + sin(π)cos(x) , 2nd and fourth one cancels out and then you have sin(x) cos (π) + sin (x) cos(π), if I add em then I just get 2 sin(x) 2cos(π). How do I reduce it down from this point
$endgroup$
– Arkilo
Mar 19 at 13:24




$begingroup$
sin(x) cos (π) - sin (π) cos(x) + sin (x) cos(π) + sin(π)cos(x) , 2nd and fourth one cancels out and then you have sin(x) cos (π) + sin (x) cos(π), if I add em then I just get 2 sin(x) 2cos(π). How do I reduce it down from this point
$endgroup$
– Arkilo
Mar 19 at 13:24




1




1




$begingroup$
Do you know $sin(pi)$ and $cos(pi)$?
$endgroup$
– J. W. Tanner
Mar 19 at 13:25




$begingroup$
Do you know $sin(pi)$ and $cos(pi)$?
$endgroup$
– J. W. Tanner
Mar 19 at 13:25










4 Answers
4






active

oldest

votes


















3












$begingroup$

$$sin(x)+colorgreensin(x-pi)+colorredsin(x+pi)$$ $$=sin(x)+colorgreensin(x)cos(-pi)+cos(x)sin(-pi)+colorredsin(x)cos(pi)+cos(x)sin(pi)$$
$$=sin(x)colorgreen-sin(x)colorred-sin(x)=-sin(x)$$



using the formula for $sin(x+theta)$ and the facts that $cos(pmpi)=-1$ and $sin(pmpi)=0$






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Aight this is v cool. You should have followed the signs of the general formula for expanding the second term tho, it makes it a little confusing to not do it.
    $endgroup$
    – Arkilo
    Mar 19 at 13:39










  • $begingroup$
    You could say $sin(x-theta)=sin(x)cos(theta)-cos(x)sin(theta)$ or $sin(x+(-theta))=sin(x)cos(-theta)+cos(x)sin(-theta);$ they're the same because $cos(theta)=cos(-theta)$ and $-sin(theta)=sin(-theta)$
    $endgroup$
    – J. W. Tanner
    Mar 19 at 13:45










  • $begingroup$
    This is great, thanks man.
    $endgroup$
    – Arkilo
    Mar 19 at 14:23


















4












$begingroup$

As shown in some other answers, this is very simple if you know that:
$$sin(x-pi)=-sin x quadmboxandquad sin(x+pi)=-sin x$$
If you don't know these formulas or you have a hard time understanding why they are true, you should spend some time to carefully study the unit circle and how symmetry there leads to these simple relations.



The image below should help you understand why $sin(x+pi)=-sin x$.



enter image description here



Then note that by "adding a full cirle", the same holds for the angle $x-pi$:
$$sin(x-pi)=sin(x-picolorblue+2pi)=sin(x+pi)=-sin x$$






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Wow man, this was very neat
    $endgroup$
    – Arkilo
    Mar 19 at 13:57










  • $begingroup$
    You're welcome; it's worth being able to work and reason with the unit circle when it comes to these basic properties of the trig. functions.
    $endgroup$
    – StackTD
    Mar 19 at 14:37


















1












$begingroup$

You probably know, that $$ sin(x−pi) = -sin(x).$$



Also $$sin(x+pi) = sin(x-pi + 2pi) = sin(x-pi)$$ so your given expression reduces to $$sin x - sin x - sin x$$






share|cite|improve this answer









$endgroup$




















    0












    $begingroup$

    Note that $sin(pi -x)=sin x$ and $sin(pi+x)=-sin x$, using which we get:



    $$beginalignedlambda&=sin x+sin(x-pi)+sin(x+pi)\&= sin x-sin(pi -x)+sin(pi+x)\&=sin x-sin x-sin x=-sin xendaligned$$



    $$sin(pi -x)=sin pi cos x-sin xcospi=+sin x \ sin(pi+x)=sinpicos x+sin xcos pi =-sin x$$






    share|cite|improve this answer











    $endgroup$












    • $begingroup$
      Wait where did you get sin(π−x)=sinx and sin(π+x)=−sinx from? Aren't you supposed to apply the sin(alpha+beta) = sin(alpha)cos(beta) + cos(alpha)sin(beta) to it?
      $endgroup$
      – Arkilo
      Mar 19 at 13:26










    • $begingroup$
      @Afzal: Did you try to apply $sin(alpha+beta)$ formula? Try and see that $sin(pi+x)=-sin x$
      $endgroup$
      – Vasya
      Mar 19 at 13:37










    • $begingroup$
      Yea I wasn't evaluating the value of π in sine so that was messing it all up.
      $endgroup$
      – Arkilo
      Mar 19 at 13:40











    • $begingroup$
      @Afzal: Good, now you may try to obtain other useful formulas for $sin(pi/2-x)$, $sin(pi/2+x)$
      $endgroup$
      – Vasya
      Mar 19 at 13:44











    • $begingroup$
      sin(π/2−x) = cos (-x) and sin(π/2+x) = cos (x)?
      $endgroup$
      – Arkilo
      Mar 19 at 14:05











    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3154040%2fwhat-is-sinx-sinx%25e2%2588%2592%25cf%2580-sinx%25cf%2580%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    4 Answers
    4






    active

    oldest

    votes








    4 Answers
    4






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3












    $begingroup$

    $$sin(x)+colorgreensin(x-pi)+colorredsin(x+pi)$$ $$=sin(x)+colorgreensin(x)cos(-pi)+cos(x)sin(-pi)+colorredsin(x)cos(pi)+cos(x)sin(pi)$$
    $$=sin(x)colorgreen-sin(x)colorred-sin(x)=-sin(x)$$



    using the formula for $sin(x+theta)$ and the facts that $cos(pmpi)=-1$ and $sin(pmpi)=0$






    share|cite|improve this answer











    $endgroup$












    • $begingroup$
      Aight this is v cool. You should have followed the signs of the general formula for expanding the second term tho, it makes it a little confusing to not do it.
      $endgroup$
      – Arkilo
      Mar 19 at 13:39










    • $begingroup$
      You could say $sin(x-theta)=sin(x)cos(theta)-cos(x)sin(theta)$ or $sin(x+(-theta))=sin(x)cos(-theta)+cos(x)sin(-theta);$ they're the same because $cos(theta)=cos(-theta)$ and $-sin(theta)=sin(-theta)$
      $endgroup$
      – J. W. Tanner
      Mar 19 at 13:45










    • $begingroup$
      This is great, thanks man.
      $endgroup$
      – Arkilo
      Mar 19 at 14:23















    3












    $begingroup$

    $$sin(x)+colorgreensin(x-pi)+colorredsin(x+pi)$$ $$=sin(x)+colorgreensin(x)cos(-pi)+cos(x)sin(-pi)+colorredsin(x)cos(pi)+cos(x)sin(pi)$$
    $$=sin(x)colorgreen-sin(x)colorred-sin(x)=-sin(x)$$



    using the formula for $sin(x+theta)$ and the facts that $cos(pmpi)=-1$ and $sin(pmpi)=0$






    share|cite|improve this answer











    $endgroup$












    • $begingroup$
      Aight this is v cool. You should have followed the signs of the general formula for expanding the second term tho, it makes it a little confusing to not do it.
      $endgroup$
      – Arkilo
      Mar 19 at 13:39










    • $begingroup$
      You could say $sin(x-theta)=sin(x)cos(theta)-cos(x)sin(theta)$ or $sin(x+(-theta))=sin(x)cos(-theta)+cos(x)sin(-theta);$ they're the same because $cos(theta)=cos(-theta)$ and $-sin(theta)=sin(-theta)$
      $endgroup$
      – J. W. Tanner
      Mar 19 at 13:45










    • $begingroup$
      This is great, thanks man.
      $endgroup$
      – Arkilo
      Mar 19 at 14:23













    3












    3








    3





    $begingroup$

    $$sin(x)+colorgreensin(x-pi)+colorredsin(x+pi)$$ $$=sin(x)+colorgreensin(x)cos(-pi)+cos(x)sin(-pi)+colorredsin(x)cos(pi)+cos(x)sin(pi)$$
    $$=sin(x)colorgreen-sin(x)colorred-sin(x)=-sin(x)$$



    using the formula for $sin(x+theta)$ and the facts that $cos(pmpi)=-1$ and $sin(pmpi)=0$






    share|cite|improve this answer











    $endgroup$



    $$sin(x)+colorgreensin(x-pi)+colorredsin(x+pi)$$ $$=sin(x)+colorgreensin(x)cos(-pi)+cos(x)sin(-pi)+colorredsin(x)cos(pi)+cos(x)sin(pi)$$
    $$=sin(x)colorgreen-sin(x)colorred-sin(x)=-sin(x)$$



    using the formula for $sin(x+theta)$ and the facts that $cos(pmpi)=-1$ and $sin(pmpi)=0$







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Mar 19 at 13:35

























    answered Mar 19 at 13:29









    J. W. TannerJ. W. Tanner

    4,4691320




    4,4691320











    • $begingroup$
      Aight this is v cool. You should have followed the signs of the general formula for expanding the second term tho, it makes it a little confusing to not do it.
      $endgroup$
      – Arkilo
      Mar 19 at 13:39










    • $begingroup$
      You could say $sin(x-theta)=sin(x)cos(theta)-cos(x)sin(theta)$ or $sin(x+(-theta))=sin(x)cos(-theta)+cos(x)sin(-theta);$ they're the same because $cos(theta)=cos(-theta)$ and $-sin(theta)=sin(-theta)$
      $endgroup$
      – J. W. Tanner
      Mar 19 at 13:45










    • $begingroup$
      This is great, thanks man.
      $endgroup$
      – Arkilo
      Mar 19 at 14:23
















    • $begingroup$
      Aight this is v cool. You should have followed the signs of the general formula for expanding the second term tho, it makes it a little confusing to not do it.
      $endgroup$
      – Arkilo
      Mar 19 at 13:39










    • $begingroup$
      You could say $sin(x-theta)=sin(x)cos(theta)-cos(x)sin(theta)$ or $sin(x+(-theta))=sin(x)cos(-theta)+cos(x)sin(-theta);$ they're the same because $cos(theta)=cos(-theta)$ and $-sin(theta)=sin(-theta)$
      $endgroup$
      – J. W. Tanner
      Mar 19 at 13:45










    • $begingroup$
      This is great, thanks man.
      $endgroup$
      – Arkilo
      Mar 19 at 14:23















    $begingroup$
    Aight this is v cool. You should have followed the signs of the general formula for expanding the second term tho, it makes it a little confusing to not do it.
    $endgroup$
    – Arkilo
    Mar 19 at 13:39




    $begingroup$
    Aight this is v cool. You should have followed the signs of the general formula for expanding the second term tho, it makes it a little confusing to not do it.
    $endgroup$
    – Arkilo
    Mar 19 at 13:39












    $begingroup$
    You could say $sin(x-theta)=sin(x)cos(theta)-cos(x)sin(theta)$ or $sin(x+(-theta))=sin(x)cos(-theta)+cos(x)sin(-theta);$ they're the same because $cos(theta)=cos(-theta)$ and $-sin(theta)=sin(-theta)$
    $endgroup$
    – J. W. Tanner
    Mar 19 at 13:45




    $begingroup$
    You could say $sin(x-theta)=sin(x)cos(theta)-cos(x)sin(theta)$ or $sin(x+(-theta))=sin(x)cos(-theta)+cos(x)sin(-theta);$ they're the same because $cos(theta)=cos(-theta)$ and $-sin(theta)=sin(-theta)$
    $endgroup$
    – J. W. Tanner
    Mar 19 at 13:45












    $begingroup$
    This is great, thanks man.
    $endgroup$
    – Arkilo
    Mar 19 at 14:23




    $begingroup$
    This is great, thanks man.
    $endgroup$
    – Arkilo
    Mar 19 at 14:23











    4












    $begingroup$

    As shown in some other answers, this is very simple if you know that:
    $$sin(x-pi)=-sin x quadmboxandquad sin(x+pi)=-sin x$$
    If you don't know these formulas or you have a hard time understanding why they are true, you should spend some time to carefully study the unit circle and how symmetry there leads to these simple relations.



    The image below should help you understand why $sin(x+pi)=-sin x$.



    enter image description here



    Then note that by "adding a full cirle", the same holds for the angle $x-pi$:
    $$sin(x-pi)=sin(x-picolorblue+2pi)=sin(x+pi)=-sin x$$






    share|cite|improve this answer









    $endgroup$












    • $begingroup$
      Wow man, this was very neat
      $endgroup$
      – Arkilo
      Mar 19 at 13:57










    • $begingroup$
      You're welcome; it's worth being able to work and reason with the unit circle when it comes to these basic properties of the trig. functions.
      $endgroup$
      – StackTD
      Mar 19 at 14:37















    4












    $begingroup$

    As shown in some other answers, this is very simple if you know that:
    $$sin(x-pi)=-sin x quadmboxandquad sin(x+pi)=-sin x$$
    If you don't know these formulas or you have a hard time understanding why they are true, you should spend some time to carefully study the unit circle and how symmetry there leads to these simple relations.



    The image below should help you understand why $sin(x+pi)=-sin x$.



    enter image description here



    Then note that by "adding a full cirle", the same holds for the angle $x-pi$:
    $$sin(x-pi)=sin(x-picolorblue+2pi)=sin(x+pi)=-sin x$$






    share|cite|improve this answer









    $endgroup$












    • $begingroup$
      Wow man, this was very neat
      $endgroup$
      – Arkilo
      Mar 19 at 13:57










    • $begingroup$
      You're welcome; it's worth being able to work and reason with the unit circle when it comes to these basic properties of the trig. functions.
      $endgroup$
      – StackTD
      Mar 19 at 14:37













    4












    4








    4





    $begingroup$

    As shown in some other answers, this is very simple if you know that:
    $$sin(x-pi)=-sin x quadmboxandquad sin(x+pi)=-sin x$$
    If you don't know these formulas or you have a hard time understanding why they are true, you should spend some time to carefully study the unit circle and how symmetry there leads to these simple relations.



    The image below should help you understand why $sin(x+pi)=-sin x$.



    enter image description here



    Then note that by "adding a full cirle", the same holds for the angle $x-pi$:
    $$sin(x-pi)=sin(x-picolorblue+2pi)=sin(x+pi)=-sin x$$






    share|cite|improve this answer









    $endgroup$



    As shown in some other answers, this is very simple if you know that:
    $$sin(x-pi)=-sin x quadmboxandquad sin(x+pi)=-sin x$$
    If you don't know these formulas or you have a hard time understanding why they are true, you should spend some time to carefully study the unit circle and how symmetry there leads to these simple relations.



    The image below should help you understand why $sin(x+pi)=-sin x$.



    enter image description here



    Then note that by "adding a full cirle", the same holds for the angle $x-pi$:
    $$sin(x-pi)=sin(x-picolorblue+2pi)=sin(x+pi)=-sin x$$







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Mar 19 at 13:42









    StackTDStackTD

    24.5k2254




    24.5k2254











    • $begingroup$
      Wow man, this was very neat
      $endgroup$
      – Arkilo
      Mar 19 at 13:57










    • $begingroup$
      You're welcome; it's worth being able to work and reason with the unit circle when it comes to these basic properties of the trig. functions.
      $endgroup$
      – StackTD
      Mar 19 at 14:37
















    • $begingroup$
      Wow man, this was very neat
      $endgroup$
      – Arkilo
      Mar 19 at 13:57










    • $begingroup$
      You're welcome; it's worth being able to work and reason with the unit circle when it comes to these basic properties of the trig. functions.
      $endgroup$
      – StackTD
      Mar 19 at 14:37















    $begingroup$
    Wow man, this was very neat
    $endgroup$
    – Arkilo
    Mar 19 at 13:57




    $begingroup$
    Wow man, this was very neat
    $endgroup$
    – Arkilo
    Mar 19 at 13:57












    $begingroup$
    You're welcome; it's worth being able to work and reason with the unit circle when it comes to these basic properties of the trig. functions.
    $endgroup$
    – StackTD
    Mar 19 at 14:37




    $begingroup$
    You're welcome; it's worth being able to work and reason with the unit circle when it comes to these basic properties of the trig. functions.
    $endgroup$
    – StackTD
    Mar 19 at 14:37











    1












    $begingroup$

    You probably know, that $$ sin(x−pi) = -sin(x).$$



    Also $$sin(x+pi) = sin(x-pi + 2pi) = sin(x-pi)$$ so your given expression reduces to $$sin x - sin x - sin x$$






    share|cite|improve this answer









    $endgroup$

















      1












      $begingroup$

      You probably know, that $$ sin(x−pi) = -sin(x).$$



      Also $$sin(x+pi) = sin(x-pi + 2pi) = sin(x-pi)$$ so your given expression reduces to $$sin x - sin x - sin x$$






      share|cite|improve this answer









      $endgroup$















        1












        1








        1





        $begingroup$

        You probably know, that $$ sin(x−pi) = -sin(x).$$



        Also $$sin(x+pi) = sin(x-pi + 2pi) = sin(x-pi)$$ so your given expression reduces to $$sin x - sin x - sin x$$






        share|cite|improve this answer









        $endgroup$



        You probably know, that $$ sin(x−pi) = -sin(x).$$



        Also $$sin(x+pi) = sin(x-pi + 2pi) = sin(x-pi)$$ so your given expression reduces to $$sin x - sin x - sin x$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Mar 19 at 13:31









        CiaPanCiaPan

        10.3k11248




        10.3k11248





















            0












            $begingroup$

            Note that $sin(pi -x)=sin x$ and $sin(pi+x)=-sin x$, using which we get:



            $$beginalignedlambda&=sin x+sin(x-pi)+sin(x+pi)\&= sin x-sin(pi -x)+sin(pi+x)\&=sin x-sin x-sin x=-sin xendaligned$$



            $$sin(pi -x)=sin pi cos x-sin xcospi=+sin x \ sin(pi+x)=sinpicos x+sin xcos pi =-sin x$$






            share|cite|improve this answer











            $endgroup$












            • $begingroup$
              Wait where did you get sin(π−x)=sinx and sin(π+x)=−sinx from? Aren't you supposed to apply the sin(alpha+beta) = sin(alpha)cos(beta) + cos(alpha)sin(beta) to it?
              $endgroup$
              – Arkilo
              Mar 19 at 13:26










            • $begingroup$
              @Afzal: Did you try to apply $sin(alpha+beta)$ formula? Try and see that $sin(pi+x)=-sin x$
              $endgroup$
              – Vasya
              Mar 19 at 13:37










            • $begingroup$
              Yea I wasn't evaluating the value of π in sine so that was messing it all up.
              $endgroup$
              – Arkilo
              Mar 19 at 13:40











            • $begingroup$
              @Afzal: Good, now you may try to obtain other useful formulas for $sin(pi/2-x)$, $sin(pi/2+x)$
              $endgroup$
              – Vasya
              Mar 19 at 13:44











            • $begingroup$
              sin(π/2−x) = cos (-x) and sin(π/2+x) = cos (x)?
              $endgroup$
              – Arkilo
              Mar 19 at 14:05















            0












            $begingroup$

            Note that $sin(pi -x)=sin x$ and $sin(pi+x)=-sin x$, using which we get:



            $$beginalignedlambda&=sin x+sin(x-pi)+sin(x+pi)\&= sin x-sin(pi -x)+sin(pi+x)\&=sin x-sin x-sin x=-sin xendaligned$$



            $$sin(pi -x)=sin pi cos x-sin xcospi=+sin x \ sin(pi+x)=sinpicos x+sin xcos pi =-sin x$$






            share|cite|improve this answer











            $endgroup$












            • $begingroup$
              Wait where did you get sin(π−x)=sinx and sin(π+x)=−sinx from? Aren't you supposed to apply the sin(alpha+beta) = sin(alpha)cos(beta) + cos(alpha)sin(beta) to it?
              $endgroup$
              – Arkilo
              Mar 19 at 13:26










            • $begingroup$
              @Afzal: Did you try to apply $sin(alpha+beta)$ formula? Try and see that $sin(pi+x)=-sin x$
              $endgroup$
              – Vasya
              Mar 19 at 13:37










            • $begingroup$
              Yea I wasn't evaluating the value of π in sine so that was messing it all up.
              $endgroup$
              – Arkilo
              Mar 19 at 13:40











            • $begingroup$
              @Afzal: Good, now you may try to obtain other useful formulas for $sin(pi/2-x)$, $sin(pi/2+x)$
              $endgroup$
              – Vasya
              Mar 19 at 13:44











            • $begingroup$
              sin(π/2−x) = cos (-x) and sin(π/2+x) = cos (x)?
              $endgroup$
              – Arkilo
              Mar 19 at 14:05













            0












            0








            0





            $begingroup$

            Note that $sin(pi -x)=sin x$ and $sin(pi+x)=-sin x$, using which we get:



            $$beginalignedlambda&=sin x+sin(x-pi)+sin(x+pi)\&= sin x-sin(pi -x)+sin(pi+x)\&=sin x-sin x-sin x=-sin xendaligned$$



            $$sin(pi -x)=sin pi cos x-sin xcospi=+sin x \ sin(pi+x)=sinpicos x+sin xcos pi =-sin x$$






            share|cite|improve this answer











            $endgroup$



            Note that $sin(pi -x)=sin x$ and $sin(pi+x)=-sin x$, using which we get:



            $$beginalignedlambda&=sin x+sin(x-pi)+sin(x+pi)\&= sin x-sin(pi -x)+sin(pi+x)\&=sin x-sin x-sin x=-sin xendaligned$$



            $$sin(pi -x)=sin pi cos x-sin xcospi=+sin x \ sin(pi+x)=sinpicos x+sin xcos pi =-sin x$$







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Mar 19 at 13:33

























            answered Mar 19 at 13:24









            Paras KhoslaParas Khosla

            2,857523




            2,857523











            • $begingroup$
              Wait where did you get sin(π−x)=sinx and sin(π+x)=−sinx from? Aren't you supposed to apply the sin(alpha+beta) = sin(alpha)cos(beta) + cos(alpha)sin(beta) to it?
              $endgroup$
              – Arkilo
              Mar 19 at 13:26










            • $begingroup$
              @Afzal: Did you try to apply $sin(alpha+beta)$ formula? Try and see that $sin(pi+x)=-sin x$
              $endgroup$
              – Vasya
              Mar 19 at 13:37










            • $begingroup$
              Yea I wasn't evaluating the value of π in sine so that was messing it all up.
              $endgroup$
              – Arkilo
              Mar 19 at 13:40











            • $begingroup$
              @Afzal: Good, now you may try to obtain other useful formulas for $sin(pi/2-x)$, $sin(pi/2+x)$
              $endgroup$
              – Vasya
              Mar 19 at 13:44











            • $begingroup$
              sin(π/2−x) = cos (-x) and sin(π/2+x) = cos (x)?
              $endgroup$
              – Arkilo
              Mar 19 at 14:05
















            • $begingroup$
              Wait where did you get sin(π−x)=sinx and sin(π+x)=−sinx from? Aren't you supposed to apply the sin(alpha+beta) = sin(alpha)cos(beta) + cos(alpha)sin(beta) to it?
              $endgroup$
              – Arkilo
              Mar 19 at 13:26










            • $begingroup$
              @Afzal: Did you try to apply $sin(alpha+beta)$ formula? Try and see that $sin(pi+x)=-sin x$
              $endgroup$
              – Vasya
              Mar 19 at 13:37










            • $begingroup$
              Yea I wasn't evaluating the value of π in sine so that was messing it all up.
              $endgroup$
              – Arkilo
              Mar 19 at 13:40











            • $begingroup$
              @Afzal: Good, now you may try to obtain other useful formulas for $sin(pi/2-x)$, $sin(pi/2+x)$
              $endgroup$
              – Vasya
              Mar 19 at 13:44











            • $begingroup$
              sin(π/2−x) = cos (-x) and sin(π/2+x) = cos (x)?
              $endgroup$
              – Arkilo
              Mar 19 at 14:05















            $begingroup$
            Wait where did you get sin(π−x)=sinx and sin(π+x)=−sinx from? Aren't you supposed to apply the sin(alpha+beta) = sin(alpha)cos(beta) + cos(alpha)sin(beta) to it?
            $endgroup$
            – Arkilo
            Mar 19 at 13:26




            $begingroup$
            Wait where did you get sin(π−x)=sinx and sin(π+x)=−sinx from? Aren't you supposed to apply the sin(alpha+beta) = sin(alpha)cos(beta) + cos(alpha)sin(beta) to it?
            $endgroup$
            – Arkilo
            Mar 19 at 13:26












            $begingroup$
            @Afzal: Did you try to apply $sin(alpha+beta)$ formula? Try and see that $sin(pi+x)=-sin x$
            $endgroup$
            – Vasya
            Mar 19 at 13:37




            $begingroup$
            @Afzal: Did you try to apply $sin(alpha+beta)$ formula? Try and see that $sin(pi+x)=-sin x$
            $endgroup$
            – Vasya
            Mar 19 at 13:37












            $begingroup$
            Yea I wasn't evaluating the value of π in sine so that was messing it all up.
            $endgroup$
            – Arkilo
            Mar 19 at 13:40





            $begingroup$
            Yea I wasn't evaluating the value of π in sine so that was messing it all up.
            $endgroup$
            – Arkilo
            Mar 19 at 13:40













            $begingroup$
            @Afzal: Good, now you may try to obtain other useful formulas for $sin(pi/2-x)$, $sin(pi/2+x)$
            $endgroup$
            – Vasya
            Mar 19 at 13:44





            $begingroup$
            @Afzal: Good, now you may try to obtain other useful formulas for $sin(pi/2-x)$, $sin(pi/2+x)$
            $endgroup$
            – Vasya
            Mar 19 at 13:44













            $begingroup$
            sin(π/2−x) = cos (-x) and sin(π/2+x) = cos (x)?
            $endgroup$
            – Arkilo
            Mar 19 at 14:05




            $begingroup$
            sin(π/2−x) = cos (-x) and sin(π/2+x) = cos (x)?
            $endgroup$
            – Arkilo
            Mar 19 at 14:05

















            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3154040%2fwhat-is-sinx-sinx%25e2%2588%2592%25cf%2580-sinx%25cf%2580%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Masuk log Menu navigasi

            Identifying “long and narrow” polygons in with PostGISlength and width of polygonWhy postgis st_overlaps reports Qgis' “avoid intersections” generated polygon as overlapping with others?Adjusting polygons to boundary and filling holesDrawing polygons with fixed area?How to remove spikes in Polygons with PostGISDeleting sliver polygons after difference operation in QGIS?Snapping boundaries in PostGISSplit polygon into parts adding attributes based on underlying polygon in QGISSplitting overlap between polygons and assign to nearest polygon using PostGIS?Expanding polygons and clipping at midpoint?Removing Intersection of Buffers in Same Layers

            Старые Смолеговицы Содержание История | География | Демография | Достопримечательности | Примечания | НавигацияHGЯOLHGЯOL41 206 832 01641 606 406 141Административно-территориальное деление Ленинградской области«Переписная оброчная книга Водской пятины 1500 года», С. 793«Карта Ингерманландии: Ивангорода, Яма, Копорья, Нотеборга», по материалам 1676 г.«Генеральная карта провинции Ингерманландии» Э. Белинга и А. Андерсина, 1704 г., составлена по материалам 1678 г.«Географический чертёж над Ижорскою землей со своими городами» Адриана Шонбека 1705 г.Новая и достоверная всей Ингерманландии ланткарта. Грав. А. Ростовцев. СПб., 1727 г.Топографическая карта Санкт-Петербургской губернии. 5-и верстка. Шуберт. 1834 г.Описание Санкт-Петербургской губернии по уездам и станамСпецкарта западной части России Ф. Ф. Шуберта. 1844 г.Алфавитный список селений по уездам и станам С.-Петербургской губернииСписки населённых мест Российской Империи, составленные и издаваемые центральным статистическим комитетом министерства внутренних дел. XXXVII. Санкт-Петербургская губерния. По состоянию на 1862 год. СПб. 1864. С. 203Материалы по статистике народного хозяйства в С.-Петербургской губернии. Вып. IX. Частновладельческое хозяйство в Ямбургском уезде. СПб, 1888, С. 146, С. 2, 7, 54Положение о гербе муниципального образования Курское сельское поселениеСправочник истории административно-территориального деления Ленинградской области.Топографическая карта Ленинградской области, квадрат О-35-23-В (Хотыницы), 1930 г.АрхивированоАдминистративно-территориальное деление Ленинградской области. — Л., 1933, С. 27, 198АрхивированоАдминистративно-экономический справочник по Ленинградской области. — Л., 1936, с. 219АрхивированоАдминистративно-территориальное деление Ленинградской области. — Л., 1966, с. 175АрхивированоАдминистративно-территориальное деление Ленинградской области. — Лениздат, 1973, С. 180АрхивированоАдминистративно-территориальное деление Ленинградской области. — Лениздат, 1990, ISBN 5-289-00612-5, С. 38АрхивированоАдминистративно-территориальное деление Ленинградской области. — СПб., 2007, с. 60АрхивированоКоряков Юрий База данных «Этно-языковой состав населённых пунктов России». Ленинградская область.Административно-территориальное деление Ленинградской области. — СПб, 1997, ISBN 5-86153-055-6, С. 41АрхивированоКультовый комплекс Старые Смолеговицы // Электронная энциклопедия ЭрмитажаПроблемы выявления, изучения и сохранения культовых комплексов с каменными крестами: по материалам работ 2016-2017 гг. в Ленинградской области