Overlapping circles covering polygon Unicorn Meta Zoo #1: Why another podcast? Announcing the arrival of Valued Associate #679: Cesar ManaraThe locus of centre of circle tangent to two given circlesArea of the Limiting PolygonThree circles having centres on the three sides of a triangleTwo conics from six Thebault circles of a triangleTangent circles and finding diametersNew Golden Ratio Construct: which one of my constructs is superior/simplest--squares & circles or just circles?Pencils of CirclesIntersection of two circles dividing lune in given ratioMaximum number of circles tangent to two concentric circlesFinding the radius of incircle of $triangle ABC$ where each of three other circles is mutually tangent to two sides of the triangle respectively
France's Public Holidays' Puzzle
How did Elite on the NES work?
What to do with someone that cheated their way though university and a PhD program?
What is the ongoing value of the Kanban board to the developers as opposed to management
How do I check if a string is entirely made of the same substring?
Function on the set of limit countable ordinals
Array Dynamic resize in heap
Suing a Police Officer Instead of the Police Department
Second order approximation of the loss function (Deep learning book, 7.33)
Where did Arya get these scars?
How to translate "red flag" into Spanish?
Overhanging vertical bars in tabular
"Working on a knee"
Is this homebrew racial feat, Stonehide, balanced?
Change doc string summary of a function on the fly
State of Debian Stable (Stretch) Repository between time of two versions (e.g. 9.8 to 9.9)
Bright yellow or light yellow?
Does wrapping a bottle of whisky in plastic affect the taste?
Why didn't the Space Shuttle bounce back into space many times as possible so that it loose lot of kinetic energy over there?
I preordered a game on my Xbox while on the home screen of my friend's account. Which of us owns the game?
Has a Nobel Peace laureate ever been accused of war crimes?
401(k) cost basis
Married in secret, can marital status in passport be changed at a later date?
Protagonist's race is hidden - should I reveal it?
Overlapping circles covering polygon
Unicorn Meta Zoo #1: Why another podcast?
Announcing the arrival of Valued Associate #679: Cesar ManaraThe locus of centre of circle tangent to two given circlesArea of the Limiting PolygonThree circles having centres on the three sides of a triangleTwo conics from six Thebault circles of a triangleTangent circles and finding diametersNew Golden Ratio Construct: which one of my constructs is superior/simplest--squares & circles or just circles?Pencils of CirclesIntersection of two circles dividing lune in given ratioMaximum number of circles tangent to two concentric circlesFinding the radius of incircle of $triangle ABC$ where each of three other circles is mutually tangent to two sides of the triangle respectively
$begingroup$
While working in GeoGebra I noticed something odd. I had a triangle with a point inside and the point was connected to each of the vertices. For each vertice I had drawn the circle passing through the vertice and the point, with the connection being the circle's diameter (see picture below).
What I noticed is that the overlapping circles completely covered the triangle. Further experimentation showed this was also the case if the point was outside the triangle (see below).
Still more experimentation appears to show this is the case for any polygon, simple or not:
Is this observation true or did GeoGebra lead me astray? I couldn't immediately find the result via Google.
geometry recreational-mathematics
$endgroup$
add a comment |
$begingroup$
While working in GeoGebra I noticed something odd. I had a triangle with a point inside and the point was connected to each of the vertices. For each vertice I had drawn the circle passing through the vertice and the point, with the connection being the circle's diameter (see picture below).
What I noticed is that the overlapping circles completely covered the triangle. Further experimentation showed this was also the case if the point was outside the triangle (see below).
Still more experimentation appears to show this is the case for any polygon, simple or not:
Is this observation true or did GeoGebra lead me astray? I couldn't immediately find the result via Google.
geometry recreational-mathematics
$endgroup$
$begingroup$
There is another remarkable detail that the intersection point of any pair of circles distinct from the red point lies on the line connecting two vertices. And this fact is quite easy to prove.
$endgroup$
– user
Mar 20 at 16:46
$begingroup$
@user I noticed that too. Could be a starting point for proving the above is true (if it is true).
$endgroup$
– Jens
Mar 20 at 16:58
$begingroup$
Yes this can be the starting point. In the case of internal point of the triangle it is practically evident. In the case of polygons it suffices to consider its convex hull.
$endgroup$
– user
Mar 20 at 17:10
1
$begingroup$
Given any polygon $mathcalP = ABCcdots F$ and a point $X$. Consider triangles formed by $X$ and an edge of $mathcalP$. Let's say triangle $XAB$. Let $Y$ be the foot of the altitude through $X$ on $AB$. Split $XAB$ into two right angled triangles $XAY$ and $XYB$. These two triangles will be covered by the two circles with $XA$ and $XB$ as diameters....
$endgroup$
– achille hui
Mar 20 at 17:12
$begingroup$
For future reference, "vertice" is not a word. You can talk about each vertex of a triangle. Vertices is the plural of vertex. It's not the usual way of forming a plural in English, because it isn't English--it's Latin. If you were to speak of multiple vertexes, however, I wouldn't complain. That's a legitimate alternative plural formation in English without the Latin pretentiousness.
$endgroup$
– David K
Mar 21 at 2:08
add a comment |
$begingroup$
While working in GeoGebra I noticed something odd. I had a triangle with a point inside and the point was connected to each of the vertices. For each vertice I had drawn the circle passing through the vertice and the point, with the connection being the circle's diameter (see picture below).
What I noticed is that the overlapping circles completely covered the triangle. Further experimentation showed this was also the case if the point was outside the triangle (see below).
Still more experimentation appears to show this is the case for any polygon, simple or not:
Is this observation true or did GeoGebra lead me astray? I couldn't immediately find the result via Google.
geometry recreational-mathematics
$endgroup$
While working in GeoGebra I noticed something odd. I had a triangle with a point inside and the point was connected to each of the vertices. For each vertice I had drawn the circle passing through the vertice and the point, with the connection being the circle's diameter (see picture below).
What I noticed is that the overlapping circles completely covered the triangle. Further experimentation showed this was also the case if the point was outside the triangle (see below).
Still more experimentation appears to show this is the case for any polygon, simple or not:
Is this observation true or did GeoGebra lead me astray? I couldn't immediately find the result via Google.
geometry recreational-mathematics
geometry recreational-mathematics
asked Mar 20 at 16:31
JensJens
4,03721032
4,03721032
$begingroup$
There is another remarkable detail that the intersection point of any pair of circles distinct from the red point lies on the line connecting two vertices. And this fact is quite easy to prove.
$endgroup$
– user
Mar 20 at 16:46
$begingroup$
@user I noticed that too. Could be a starting point for proving the above is true (if it is true).
$endgroup$
– Jens
Mar 20 at 16:58
$begingroup$
Yes this can be the starting point. In the case of internal point of the triangle it is practically evident. In the case of polygons it suffices to consider its convex hull.
$endgroup$
– user
Mar 20 at 17:10
1
$begingroup$
Given any polygon $mathcalP = ABCcdots F$ and a point $X$. Consider triangles formed by $X$ and an edge of $mathcalP$. Let's say triangle $XAB$. Let $Y$ be the foot of the altitude through $X$ on $AB$. Split $XAB$ into two right angled triangles $XAY$ and $XYB$. These two triangles will be covered by the two circles with $XA$ and $XB$ as diameters....
$endgroup$
– achille hui
Mar 20 at 17:12
$begingroup$
For future reference, "vertice" is not a word. You can talk about each vertex of a triangle. Vertices is the plural of vertex. It's not the usual way of forming a plural in English, because it isn't English--it's Latin. If you were to speak of multiple vertexes, however, I wouldn't complain. That's a legitimate alternative plural formation in English without the Latin pretentiousness.
$endgroup$
– David K
Mar 21 at 2:08
add a comment |
$begingroup$
There is another remarkable detail that the intersection point of any pair of circles distinct from the red point lies on the line connecting two vertices. And this fact is quite easy to prove.
$endgroup$
– user
Mar 20 at 16:46
$begingroup$
@user I noticed that too. Could be a starting point for proving the above is true (if it is true).
$endgroup$
– Jens
Mar 20 at 16:58
$begingroup$
Yes this can be the starting point. In the case of internal point of the triangle it is practically evident. In the case of polygons it suffices to consider its convex hull.
$endgroup$
– user
Mar 20 at 17:10
1
$begingroup$
Given any polygon $mathcalP = ABCcdots F$ and a point $X$. Consider triangles formed by $X$ and an edge of $mathcalP$. Let's say triangle $XAB$. Let $Y$ be the foot of the altitude through $X$ on $AB$. Split $XAB$ into two right angled triangles $XAY$ and $XYB$. These two triangles will be covered by the two circles with $XA$ and $XB$ as diameters....
$endgroup$
– achille hui
Mar 20 at 17:12
$begingroup$
For future reference, "vertice" is not a word. You can talk about each vertex of a triangle. Vertices is the plural of vertex. It's not the usual way of forming a plural in English, because it isn't English--it's Latin. If you were to speak of multiple vertexes, however, I wouldn't complain. That's a legitimate alternative plural formation in English without the Latin pretentiousness.
$endgroup$
– David K
Mar 21 at 2:08
$begingroup$
There is another remarkable detail that the intersection point of any pair of circles distinct from the red point lies on the line connecting two vertices. And this fact is quite easy to prove.
$endgroup$
– user
Mar 20 at 16:46
$begingroup$
There is another remarkable detail that the intersection point of any pair of circles distinct from the red point lies on the line connecting two vertices. And this fact is quite easy to prove.
$endgroup$
– user
Mar 20 at 16:46
$begingroup$
@user I noticed that too. Could be a starting point for proving the above is true (if it is true).
$endgroup$
– Jens
Mar 20 at 16:58
$begingroup$
@user I noticed that too. Could be a starting point for proving the above is true (if it is true).
$endgroup$
– Jens
Mar 20 at 16:58
$begingroup$
Yes this can be the starting point. In the case of internal point of the triangle it is practically evident. In the case of polygons it suffices to consider its convex hull.
$endgroup$
– user
Mar 20 at 17:10
$begingroup$
Yes this can be the starting point. In the case of internal point of the triangle it is practically evident. In the case of polygons it suffices to consider its convex hull.
$endgroup$
– user
Mar 20 at 17:10
1
1
$begingroup$
Given any polygon $mathcalP = ABCcdots F$ and a point $X$. Consider triangles formed by $X$ and an edge of $mathcalP$. Let's say triangle $XAB$. Let $Y$ be the foot of the altitude through $X$ on $AB$. Split $XAB$ into two right angled triangles $XAY$ and $XYB$. These two triangles will be covered by the two circles with $XA$ and $XB$ as diameters....
$endgroup$
– achille hui
Mar 20 at 17:12
$begingroup$
Given any polygon $mathcalP = ABCcdots F$ and a point $X$. Consider triangles formed by $X$ and an edge of $mathcalP$. Let's say triangle $XAB$. Let $Y$ be the foot of the altitude through $X$ on $AB$. Split $XAB$ into two right angled triangles $XAY$ and $XYB$. These two triangles will be covered by the two circles with $XA$ and $XB$ as diameters....
$endgroup$
– achille hui
Mar 20 at 17:12
$begingroup$
For future reference, "vertice" is not a word. You can talk about each vertex of a triangle. Vertices is the plural of vertex. It's not the usual way of forming a plural in English, because it isn't English--it's Latin. If you were to speak of multiple vertexes, however, I wouldn't complain. That's a legitimate alternative plural formation in English without the Latin pretentiousness.
$endgroup$
– David K
Mar 21 at 2:08
$begingroup$
For future reference, "vertice" is not a word. You can talk about each vertex of a triangle. Vertices is the plural of vertex. It's not the usual way of forming a plural in English, because it isn't English--it's Latin. If you were to speak of multiple vertexes, however, I wouldn't complain. That's a legitimate alternative plural formation in English without the Latin pretentiousness.
$endgroup$
– David K
Mar 21 at 2:08
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
We'll prove the case for $n=3$ and then generalize for an $n-$gon.
Let $triangle ABC$ be a triangle and $P$ an arbitraty point (inside or outside the triangle). Consider now the circumferences $omega$ and $tau$ with diameters $AP$ and $PB$ respectively. Consider furthermore the point $Din [AB]$, such that $PDbot AB$. In vitue of the converse of Thales' Theorem
$$angle ADP=90°implies Din omega qquadqquad angle PDB=90°implies Din tau$$ Analogously, we can prove that the intersections of the circles are $P$ and three points $D, Ein BC, Fin AC$ which lie on the sides of the triangles or on the extensions respectively.
Observe now that the triangles $triangle PBE, triangle PEC, triangle PCF, triangle PFA, triangle PDA$ and $triangle PBD$ are respectively inscribed in the circles $omega, tau$ and $rho$ (with the diameter $PC$). Thus, so is $triangle ABC$.
Now, once proven the case for a triangle, simply separate an $n-$gon into $(n-2)$ triangles, which will all be covered by the overlapping circles. Thus, the $n$-gon will also be covered $quadsquare$
For further reading: Episodes in nineteenth and twentieth century Euclidean Geometry (Honsberger), pages 79-86: Miquel's Theorem
$endgroup$
add a comment |
$begingroup$
The property you found boils down to the following: given a segment $AB$ and any point $P$ outside it, then the circles having $PB$ and $PA$ as diameter completely cover triangle $ABP$. And that is obvious, because those circles are the circumcircles of triangles $APH$ and $BPH$, where $H$ is the orthogonal projection of $P$ onto line $AB$.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3155672%2foverlapping-circles-covering-polygon%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We'll prove the case for $n=3$ and then generalize for an $n-$gon.
Let $triangle ABC$ be a triangle and $P$ an arbitraty point (inside or outside the triangle). Consider now the circumferences $omega$ and $tau$ with diameters $AP$ and $PB$ respectively. Consider furthermore the point $Din [AB]$, such that $PDbot AB$. In vitue of the converse of Thales' Theorem
$$angle ADP=90°implies Din omega qquadqquad angle PDB=90°implies Din tau$$ Analogously, we can prove that the intersections of the circles are $P$ and three points $D, Ein BC, Fin AC$ which lie on the sides of the triangles or on the extensions respectively.
Observe now that the triangles $triangle PBE, triangle PEC, triangle PCF, triangle PFA, triangle PDA$ and $triangle PBD$ are respectively inscribed in the circles $omega, tau$ and $rho$ (with the diameter $PC$). Thus, so is $triangle ABC$.
Now, once proven the case for a triangle, simply separate an $n-$gon into $(n-2)$ triangles, which will all be covered by the overlapping circles. Thus, the $n$-gon will also be covered $quadsquare$
For further reading: Episodes in nineteenth and twentieth century Euclidean Geometry (Honsberger), pages 79-86: Miquel's Theorem
$endgroup$
add a comment |
$begingroup$
We'll prove the case for $n=3$ and then generalize for an $n-$gon.
Let $triangle ABC$ be a triangle and $P$ an arbitraty point (inside or outside the triangle). Consider now the circumferences $omega$ and $tau$ with diameters $AP$ and $PB$ respectively. Consider furthermore the point $Din [AB]$, such that $PDbot AB$. In vitue of the converse of Thales' Theorem
$$angle ADP=90°implies Din omega qquadqquad angle PDB=90°implies Din tau$$ Analogously, we can prove that the intersections of the circles are $P$ and three points $D, Ein BC, Fin AC$ which lie on the sides of the triangles or on the extensions respectively.
Observe now that the triangles $triangle PBE, triangle PEC, triangle PCF, triangle PFA, triangle PDA$ and $triangle PBD$ are respectively inscribed in the circles $omega, tau$ and $rho$ (with the diameter $PC$). Thus, so is $triangle ABC$.
Now, once proven the case for a triangle, simply separate an $n-$gon into $(n-2)$ triangles, which will all be covered by the overlapping circles. Thus, the $n$-gon will also be covered $quadsquare$
For further reading: Episodes in nineteenth and twentieth century Euclidean Geometry (Honsberger), pages 79-86: Miquel's Theorem
$endgroup$
add a comment |
$begingroup$
We'll prove the case for $n=3$ and then generalize for an $n-$gon.
Let $triangle ABC$ be a triangle and $P$ an arbitraty point (inside or outside the triangle). Consider now the circumferences $omega$ and $tau$ with diameters $AP$ and $PB$ respectively. Consider furthermore the point $Din [AB]$, such that $PDbot AB$. In vitue of the converse of Thales' Theorem
$$angle ADP=90°implies Din omega qquadqquad angle PDB=90°implies Din tau$$ Analogously, we can prove that the intersections of the circles are $P$ and three points $D, Ein BC, Fin AC$ which lie on the sides of the triangles or on the extensions respectively.
Observe now that the triangles $triangle PBE, triangle PEC, triangle PCF, triangle PFA, triangle PDA$ and $triangle PBD$ are respectively inscribed in the circles $omega, tau$ and $rho$ (with the diameter $PC$). Thus, so is $triangle ABC$.
Now, once proven the case for a triangle, simply separate an $n-$gon into $(n-2)$ triangles, which will all be covered by the overlapping circles. Thus, the $n$-gon will also be covered $quadsquare$
For further reading: Episodes in nineteenth and twentieth century Euclidean Geometry (Honsberger), pages 79-86: Miquel's Theorem
$endgroup$
We'll prove the case for $n=3$ and then generalize for an $n-$gon.
Let $triangle ABC$ be a triangle and $P$ an arbitraty point (inside or outside the triangle). Consider now the circumferences $omega$ and $tau$ with diameters $AP$ and $PB$ respectively. Consider furthermore the point $Din [AB]$, such that $PDbot AB$. In vitue of the converse of Thales' Theorem
$$angle ADP=90°implies Din omega qquadqquad angle PDB=90°implies Din tau$$ Analogously, we can prove that the intersections of the circles are $P$ and three points $D, Ein BC, Fin AC$ which lie on the sides of the triangles or on the extensions respectively.
Observe now that the triangles $triangle PBE, triangle PEC, triangle PCF, triangle PFA, triangle PDA$ and $triangle PBD$ are respectively inscribed in the circles $omega, tau$ and $rho$ (with the diameter $PC$). Thus, so is $triangle ABC$.
Now, once proven the case for a triangle, simply separate an $n-$gon into $(n-2)$ triangles, which will all be covered by the overlapping circles. Thus, the $n$-gon will also be covered $quadsquare$
For further reading: Episodes in nineteenth and twentieth century Euclidean Geometry (Honsberger), pages 79-86: Miquel's Theorem
edited Mar 21 at 6:09
answered Mar 20 at 17:29
Dr. MathvaDr. Mathva
3,5961630
3,5961630
add a comment |
add a comment |
$begingroup$
The property you found boils down to the following: given a segment $AB$ and any point $P$ outside it, then the circles having $PB$ and $PA$ as diameter completely cover triangle $ABP$. And that is obvious, because those circles are the circumcircles of triangles $APH$ and $BPH$, where $H$ is the orthogonal projection of $P$ onto line $AB$.
$endgroup$
add a comment |
$begingroup$
The property you found boils down to the following: given a segment $AB$ and any point $P$ outside it, then the circles having $PB$ and $PA$ as diameter completely cover triangle $ABP$. And that is obvious, because those circles are the circumcircles of triangles $APH$ and $BPH$, where $H$ is the orthogonal projection of $P$ onto line $AB$.
$endgroup$
add a comment |
$begingroup$
The property you found boils down to the following: given a segment $AB$ and any point $P$ outside it, then the circles having $PB$ and $PA$ as diameter completely cover triangle $ABP$. And that is obvious, because those circles are the circumcircles of triangles $APH$ and $BPH$, where $H$ is the orthogonal projection of $P$ onto line $AB$.
$endgroup$
The property you found boils down to the following: given a segment $AB$ and any point $P$ outside it, then the circles having $PB$ and $PA$ as diameter completely cover triangle $ABP$. And that is obvious, because those circles are the circumcircles of triangles $APH$ and $BPH$, where $H$ is the orthogonal projection of $P$ onto line $AB$.
answered Mar 20 at 17:22
AretinoAretino
26k31546
26k31546
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3155672%2foverlapping-circles-covering-polygon%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
There is another remarkable detail that the intersection point of any pair of circles distinct from the red point lies on the line connecting two vertices. And this fact is quite easy to prove.
$endgroup$
– user
Mar 20 at 16:46
$begingroup$
@user I noticed that too. Could be a starting point for proving the above is true (if it is true).
$endgroup$
– Jens
Mar 20 at 16:58
$begingroup$
Yes this can be the starting point. In the case of internal point of the triangle it is practically evident. In the case of polygons it suffices to consider its convex hull.
$endgroup$
– user
Mar 20 at 17:10
1
$begingroup$
Given any polygon $mathcalP = ABCcdots F$ and a point $X$. Consider triangles formed by $X$ and an edge of $mathcalP$. Let's say triangle $XAB$. Let $Y$ be the foot of the altitude through $X$ on $AB$. Split $XAB$ into two right angled triangles $XAY$ and $XYB$. These two triangles will be covered by the two circles with $XA$ and $XB$ as diameters....
$endgroup$
– achille hui
Mar 20 at 17:12
$begingroup$
For future reference, "vertice" is not a word. You can talk about each vertex of a triangle. Vertices is the plural of vertex. It's not the usual way of forming a plural in English, because it isn't English--it's Latin. If you were to speak of multiple vertexes, however, I wouldn't complain. That's a legitimate alternative plural formation in English without the Latin pretentiousness.
$endgroup$
– David K
Mar 21 at 2:08